USER LICENSE AGREEMENT

NOTICE OF LICENSE:

BY PURCHASING THIS PRODUCT, YOU BECOME A LICENSEE AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE AGREEMENT. This license covers the Work supplied by ITE and governs your use of the Work as Licensee.

IMPORTANT: Trip Generation Manual, 10th Edition Supplement (“the Work”) is a copyrighted work owned and published by the Institute of Transportation Engineers (ITE) and may be used and reproduced only in accordance with the terms of this License Agreement. The Work is now and will continue to be owned by ITE and is being made available to you in accordance with this Agreement, under which you agree to become a “Licensee.”

This Agreement authorizes you (the customer and Licensee) to make non-published copies of portions of the Work, as set out below, provided you do not reproduce the Work in an unauthorized fashion, and that you do not display, republish, sell, or otherwise interfere with ITE’s copyright ownership in the Work. YOU MAY NOT COPY THE WORK IN ANY MANNER WHICH VIOLATES THIS LICENSE. IF YOU ARE NOT AN EMPLOYEE OR AGENT OF A LICENSEE OF THE WORK, YOU HAVE NO RIGHT TO COPY, MANIPULATE, ALTER OR OTHERWISE CHANGE THE WORK IN ANY MANNER. IF YOU ARE AN EMPLOYEE OR AGENT OF A LICENSEEE OF THIS WORK, YOU HAVE A LEGAL RESPONSIBILITY TO KNOW AND FOLLOW THE TERMS OF THE LICENSE, AS FOLLOWS:

Notices of Intellectual Property Rights. You agree to ensure that a visible and conspicuous copyright notice be visible on any copies of the work made by you and/or when the Work is displayed electronically. Such notice, if not already present on the copies or displayed version of the Work, shall state: “Copyright © 2020 by Institute of Transportation Engineers.” By entering into this License Agreement, you acknowledge and agree that ITE is the sole owner of all rights in the Work, including all copyrights.

Warranties. All warranties of merchantability or fitness of use for a particular purpose, express or implied, except for those contained in this agreement, are waived by you as Licensee. The Work is licensed to you “as is” Works and ITE does not guarantee that the Work will meet “all requirements” of your business or profession. ITE shall not be responsible for any damages, consequential or otherwise, that may be suffered by you as Licensee or your employees or agents in the use of the Work. (Such damages shall include but not be limited to lost profits, lost sales, all actions lying in tort, or any other cause of action arising out of the use of the Work.)

Termination. This license shall also terminate immediately if you as Licensee do not comply directly or indirectly with any term of this License Agreement, including but not limited to non-payment of license fees, unauthorized copying, or unauthorized modification of the Work in any manner. You may terminate this license at any time by so indicating in writing to ITE and destroying all copies of the Work or by returning the Work to ITE. Use of the Work after termination is not authorized by ITE and shall be considered by ITE to be infringement of its intellectual property rights, in addition to any rights that may accrue to ITE by such use.

Assignments, Transfers. You may not assign this license Agreement, the rights, duties, and obligations in this License Agreement, nor may you assign the Work without permission from ITE.
Copying; display. You may copy portions of the Work at no charge as you may need from time to time in order to carry out your professional work. You may not copy, reproduce in any format, display, manipulate, publish or otherwise change and/or interfere with the Work in a manner that would allow the public or any non-private gathering or audience to see or have access to the Work or any portion of the Work. No person acting on your behalf may violate the terms of this License Agreement. You agree that only employees and/or agents who understand the basic terms of this License and who are aware of ITE’s ownership of the Work, including all copies of the Work, shall have access to the Work.

Audits. ITE may make reasonable examinations and inquiries of your use of the Work to ascertain that you are complying with the limitations upon copying and other uses of the Work as stated in this License Agreement. If any such examination or inquiry reveals noncompliance with the terms of this License Agreement, ITE may terminate this agreement.

Injunctive Relief. As Licensee, you acknowledge that misuse, copying, or disclosure of the Work will give rise to irreparable injury to ITE, and leave ITE inadequately compensable in damages. Accordingly, ITE may seek and obtain injunctive relief against your breach or threatened breach, of this License Agreement, in addition to any other legal remedies, such as suit for copyright infringement, which may be available to ITE. As Licensee, you also acknowledge and agree that the terms contained within this Agreement are necessary for the protection of ITE’s legitimate business interests and are reasonable in scope and content.

If you have questions about the terms of this License Agreement, please e-mail or telephone ITE at the following address:

Institute of Transportation Engineers
1627 Eye Street, NW, Suite 600
Washington, DC 20006 USA
Phone: +1 202-785-0060
E-mail: ite_staff@ite.org
Trip Generation Manual, 10th Edition Supplement

The Institute of Transportation Engineers is an international educational and scientific association of transportation professionals who are responsible for meeting mobility and safety needs. ITE facilitates the application of technology and scientific principles to research, planning, functional design, implementation, operation, policy development, and management for any mode of ground transportation. Through its products and services, ITE promotes professional development of its members, supports and encourages education, stimulates research, develops public awareness programs, and serves as a conduit for the exchange of professional information.

Founded in 1930, ITE is a community of transportation professionals including, but not limited to transportation engineers, transportation planners, consultants, educators, and researchers. Through meetings, seminars, publications, and a network of over 16,000 members working in nearly 90 countries, ITE is your source for expertise, knowledge, and ideas.

Institute of Transportation Engineers
1627 Eye Street, NW, Suite 600
Washington, DC 20006 USA
Telephone: 202-785-0060
Fax: 202-785-0609
www.ite.org

© 2020 Institute of Transportation Engineers. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including storing in a retrieval system, photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the above address.

Publication No. IR-016H
500/AGS/0917
Printed in the United States of America
First Printing
Table of Contents

1 INTRODUCTION .. 1
 Purpose .. 1
 Contents ... 1
 Organization .. 2
 Update Procedure .. 3

2 DEFINITION OF TERMS ... 5
 Trip Types and Trip Modes .. 5
 Setting/Location ... 6
 Time Periods .. 7
 Independent Variables .. 7
 Data Page Terms ... 11

3 DESCRIPTION OF DATABASE 13
 Data Collection .. 13
 Data Analysis and Storage ... 13
 Data Age .. 14

4 DESCRIPTION OF DATA PLOTS AND REPORTED STATISTICS 15
 Data Plots ... 15
 Reported Statistics ... 15
 Cautions .. 17

5 NEW LAND USE AND EXISTING LAND USES WITH SUBSTANTIAL EXPANSION OF DATABASE 19
 Land Use Description Pages .. 19
 Land Use: 155 High-Cube Fulfillment Center Warehouse .. 20
 Land Use: 156 High-Cube Parcel Hub Warehouse ... 37
 Land Use: 223 Affordable Housing 44

6 WALK-TRANSIT-BICYCLE TRIP GENERATION DATA PLOTS ... 71

7 WALK TRIP GENERATION DATA PLOTS 265

8 TRANSIT TRIP GENERATION DATA PLOTS 437

9 BICYCLE TRIP GENERATION DATA PLOTS 507

10 TRUCK TRIP GENERATION DATA PLOTS 577

APPENDIX A: SOURCES ... 775

APPENDIX B: WALK-TRANSIT-BICYCLE TRIPS AS PERCENT OF TOTAL PERSON TRIPS 777

APPENDIX C: TRUCK TRIPS AS PERCENT OF TOTAL VEHICLE TRIPS ... 789

APPENDIX D: TRUCK TRIP TIME-OF-DAY DISTRIBUTIONS ... 805
Preface

Trip Generation Manual, 10th Edition Supplement is a publication of the Institute of Transportation Engineers (ITE). Trip Generation Manual is an educational tool for planners, transportation professionals, zoning boards, and others who are interested in estimating trip generation at a proposed development.

Trip Generation Manual includes a complete set of searchable electronic files including land use descriptions and data plots for all available combinations of land uses, time periods, independent variables, and settings. Data contained in Trip Generation Manual are presented for informational purposes only and do not include ITE recommendations on the best course of action or the preferred application of the data. The information is based on trip generation studies submitted voluntarily to ITE by public agencies, developers, consulting firms, student chapters, and associations.

Trip Generation Manual provides access for users to the ITETripGen web app. This desktop application allows electronic access to the entire trip generation dataset with numerous filtering capabilities including site setting (i.e., rural, general urban/suburban, dense multi-use urban, center city core), geographic location, age of data, and development size. Instructions for using ITETripGen are included within the app.

Additional data are needed from the profession to create a data-rich environment for trip generation analysis. ITE will continue to prepare updates to Trip Generation Manual.

User comments on Trip Generation Manual are invited. ITE continually seeks ways to increase the value of this document and requests that users provide recently collected data for the land uses presented in Trip Generation Manual or any other land uses for inclusion in future editions and updates.

Although this report provides a powerful tool to better understand site-generated vehicle and person trips, it contains information that can also be easily misinterpreted without sound professional judgment. Users are cautioned to use professional judgment in applying all data contained in this report. They also need to be cognizant of site and area characteristics that can affect trip generation (e.g., availability of transit services, demand management strategies, parking pricing) and of the continued need for additional data. Lack of appreciation of these factors may lead to an inaccurate estimate of vehicle and person trip generation and ultimately the improper design of person and vehicle site access.
Trip Generation Manual, 10th Edition Supplement (Supplement) is the product of concerted effort by dedicated volunteers, contractors, and ITE Headquarters staff.

Kevin G. Hooper (F), Kevin Hooper Associates, served as the technical lead for the project. He was responsible for proactively pursuing the acquisition of new trip generation data; reviewing past submittals for modal person trip (i.e., walk, transit, bicycle) data and truck trip data, assembling and analyzing all data received, conducting statistical analyses and validation for the Supplement, and composing and editing text.

Lisa M. Fontana Tierney (F), ITE Traffic Engineering Senior Director, served as project manager for the publication and assisted in the review of technical content of the report.

ITE Technical Publications Manager Deborah Rouse edited and managed the production of the publication.

Special thanks are extended to Transoft Solutions for providing programming support for refinement of the ITETripGen web app to accommodate multi-modal person trips and truck trips and for producing the data plot pages.

Finally, ITE expresses its appreciation to the many agencies, firms, students, and other individuals who have provided data to this effort.

(Letters in parentheses indicate ITE member grade: M—Member, F—Fellow, H—Honorary)
1 Introduction

Purpose

The purpose of Trip Generation Manual, 10th Edition Supplement (Supplement) is to expand the data presented in the 10th Edition.

- The Supplement adds a new land use (Affordable Housing (223))
- The Supplement substantially expands data for two land uses (High-Cube Fulfillment Center Warehouse (155) and High-Cube Parcel Hub Warehouse (156))
- The Supplement adds walk, transit, and bicycle trip generation data for 53 land uses
- The Supplement adds truck trip generation data for 50 land uses

Data and text presented in the Supplement are intended to be used in conjunction with data and text in the 10th Edition. The analyst is encouraged to review and become familiar with the 10th Edition prior to using this Supplement. Future editions of Trip Generation Manual will merge the two documents.

Data contained in the Supplement are presented for informational purposes. The Supplement provides explanations of the composition of the expanded database, of the presentation of trip generation information in data plots and tables, and of the various statistics that are presented to help the analyst.

Contents

The 10th Edition and its Supplement contain the best available data on the subject of person trip generation (total and by travel mode) and vehicle trip generation (both total and by truck) related to land use. The database will be enhanced and expanded in future editions of Trip Generation Manual.

The Supplement contains text, tables, data plots, and statistics that describe current state-of-the-practice understanding of the relationship between walk, bicycle, transit, motor vehicle, and truck trip generation and characteristics associated with an individual development site or land use. The Supplement presents land use descriptions and data plots for combinations of available land uses, time periods, independent variables, and settings contained in the ITE database. The Supplement is available in both hard copy form and as an electronic file.

The Supplement is complemented by ITETripGen, a desktop application that allows electronic access to the entire ITE trip generation dataset (i.e., all data presented in the 10th Edition and in the Supplement). The web app enables an analyst to reproduce the data plots and statistics presented in the 10th Edition and the Supplement. The web app also provides access to additional plots not contained in the hard-copy or electronic version of the Supplement.

The web app provides numerous filtering capabilities for the analyst to view subsets of the complete database. Subsets can be created according to the geographic location of the study site, the age of the count data, and the development size.
Organization

Chapter 2 provides a glossary of terms used in the 10th Edition and its Supplement. Definitions are presented for trip types and modes, various settings used to classify study site locations, time periods for which trip generation is reported, and independent variables for which a relationship to person or vehicle trip generation is plotted. Terms used on the land use description pages and in the data plots are also defined in Chapter 2.

Chapter 3 describes the ITE trip generation database. The data included in the 10th Edition and its Supplement were voluntarily collected and submitted to ITE by public agencies, developers, consulting firms, student chapters, and associations. The data represent person (either total or by travel mode) and vehicle (either total or by vehicle classification) trip generation studies for which at least one hour of counts were conducted on a given day. The sources are listed in Appendix A.

Chapter 4 describes the generic contents of the trip generation data plots and their associated statistics. The chapter also presents guidance on the proper understanding of the data presented in the manual.

Chapter 5 presents land use descriptions and data plots for the new land use added to the trip generation database and for the two existing land uses for which a substantial expansion of the database is presented. The text for each individual land use code includes a description of the characteristics of study sites assigned to the particular land use code, the sources for the data, the geographic areas of the study sites, and the years when the data were collected.

Chapters 6 through 10 present data plots organized by trip travel mode. Chapter 6 presents data plots for all person trips considered a walk, transit, or bicycle trip generated by a land use.

Chapter 7 presents data plots for walk trips generated by a land use.

Chapter 8 presents data plots for transit trips generated by a land use.

Chapter 9 presents data plots for bicycle trips generated by a land use.

Chapter 10 presents data plots for truck trips generated by a land use.

The Supplement contains appendices that provide the following supporting information:

- Appendix A provides a list of data sources for the three new or expanded land use databases presented in Chapter 5. The sources for modal and truck trip generation presented in the Supplement are the same as those used for vehicle and person trip data presented in Trip Generation Manual, 10th Edition and are listed in that document.
- Appendix B presents modal trip generation as a percentage of total person trip generation by land use.
- Appendix C presents truck trip generation as a percentage of total vehicle trip generation by land use.
- Appendix D presents time-of-day distributions for truck trip generation by land use.
Update Procedure

ITE has established a procedure for updating the data plots and statistics presented in *Trip Generation Manual*. ITE invites all interested parties to collect trip generation data at one or more sites and submit the data for its use in an updated publication.

This procedure is intended to maintain a continual, uniform method of obtaining and summarizing the current trip generation data for all land uses. ITE does the following:

- Stores all trip generation data
- Encourages ITE district and section technical committees, ITE student chapters, governmental agencies, and private consultants to collect additional data
- Distributes trip generation data forms in hard copy and electronic formats
- Maintains a database for trip generation analyses and summarization
- Maintains and modifies, when necessary, a uniform procedure for collecting data
- Summarizes trip generation data
- Conducts special trip generation analyses when appropriate
- Revises trip generation rates, equations, plots, and text on the basis of additional data
- Identifies data collection needs in areas where deficiencies exist or where little information is available

Trip generation data collection forms are available on the ITE website (www.ite.org). Data may be submitted in electronic form to the ITE Trip Generation email address or in hard copy to the ITE mailing address.

Completed forms should be returned to ITE at the following address:

Institute of Transportation Engineers
1627 Eye Street, NW, Suite 600
Washington, DC 20006
Telephone: +1 202-785-0060
Fax: +1 202-785-0609
www.ite.org
e-mail: tripgen@ite.org

Questions and Comments

Questions and comments regarding *Trip Generation Manual*, 10th Edition and its Supplement should be addressed to the following:

Institute of Transportation Engineers
1627 Eye Street, NW, Suite 600
Washington, DC 20006
Telephone: +1 202-785-0060
Fax: +1 202-785-0609
www.ite.org
e-mail: lfontana@ite.org
2 Definition of Terms

The definitions presented in this chapter are intended for use in *Trip Generation Manual*, 10th Edition and its Supplement. The terms are grouped as follows:

- Trip Types and Trip Modes
- Setting/Location
- Time Periods
- Independent Variables
- Data Page Terms

Trip Types and Trip Modes

Bicycle Trip—an inbound or outbound person trip where the greatest distance between the trip origin and trip destination is traveled by a bicycle or any pedal-powered vehicle.

Person Trip—a trip made by any mode of travel by an individual person from an origin to a destination. Every trip made anywhere by a person is a person trip. If three people leave a development site in a single vehicle, this is counted as three separate person trips.

Personal Passenger Vehicle—includes (1) any automobile, van, SUV, motorcycle, moped, or light truck driven by a private individual for personal use; (2) taxi, paratransit, or vanpool (including airport shuttle); and (3) pick-up truck not being used for commercial purposes.

Transit Trip—an inbound or outbound person trip that crosses the site cordon line in a transit vehicle or where the greatest distance between the trip origin and trip destination is traveled by transit vehicle. Transit includes the following modes: bus, heavy rail (metro, subway, rapid transit), light rail (streetcar, tramway, trolley), commuter rail (regional rail), monorail, ferry boat, trolleybus, cable car, automated guideway transit (personal rapid transit), aerial tramway, and inclined plane. A taxi, paratransit vehicle, or vanpool is considered a personal passenger vehicle and not transit.

Trip or Trip End—a single or one-direction person or vehicle movement with either the origin or the destination (exiting or entering) inside a study site. In technical terms, a trip has an origin and a destination at its respective ends (known as trip ends). Each trip end is a part of a trip. For site trip generation, the analyst is usually interested in trips entering and exiting a single site.

Truck Trip—the movement of a commercial cargo transport vehicle that transports cargo across a site cordon line. A vehicle parked off-site that is loaded or unloaded with cargo destined from or to a study site is considered a truck trip generated by that site. Commercial cargo is typically transported in either medium-duty or heavy-duty trucks. A service vehicle entering or exiting a site is not considered a truck trip.

Vehicle Trip—the movement of a personal passenger vehicle or truck that transports a person across the site cordon line. A person can cross the cordon line as a passenger in a vehicle or as a pedestrian having been transported to the site in a vehicle. For example, if a person drives a
personal passenger vehicle from home, parks off-site, and walks from the parking facility to an office building, the trip is considered an entering vehicle trip generated by the office building (as well as an exiting vehicle trip at the place of residence). However, if a person is transported to the vicinity of a site in a bus or rail transit and walks the remainder of the distance to the site, the trip represents a transit trip and not a vehicle trip.

Walk Trip—an inbound or outbound person trip where the greatest distance between the trip origin and trip destination is traveled on foot or on any type of assistive device (including wheelchair, scooter, skates, or skateboard).

Walk-Transit-Bike Trip—an inbound or outbound person trip that is either a walk trip, transit trip, or bicycle trip.

Setting/Location

Center City Core—the downtown area for a major metropolitan region at the focal point of a regional light- or heavy-rail transit system. This area type is typified by multi-storied buildings, a wide range of land uses, an extensive pedestrian sidewalk network, and shared and priced parking both on-street and in structured garages or surface lots. The area typically has more jobs than residents and therefore is typically an employment destination. The area also includes the immediate vicinity of the commercial core.

Dense Multi-Use Urban—a fully developed area (or nearly so), with diverse and interacting complementary land uses, good pedestrian connectivity, and convenient and frequent transit. This area type can be a well-developed urban area outside a major metropolitan downtown or a moderate size urban area downtown. The land use mix typically includes office, retail, residential, and often entertainment, hotel, and other commercial uses. The residential uses are typically multifamily or single-family on lots no larger than one-fourth acre. The commercial uses often have little or no setback from the sidewalk. Because the motor vehicle still represents the primary mode of travel to and from the area, there typically is on-street parking and often off-street public parking. The complementary land uses provide the opportunity for short trips within the Dense Multi-Use Urban area, made convenient by walking, biking, or transit. The area is served by significant transit (either rail or bus) that enables a high level of transit usage to and from area development.

General Urban/Suburban—an area associated with almost homogeneous vehicle-centered access. Nearly all person trips that enter or exit a development site are by personal passenger or commercial vehicle. The area can be fully developed (or nearly so) at low-medium density with a mix of residential and commercial uses. The commercial land uses are typically concentrated at intersections or spread along commercial corridors, often surrounded by low-density, almost entirely residential development. Most commercial buildings are located behind the parking area or surrounded by parking. The mixing of land uses is only in terms of their proximity, not in terms of function. A retail land use may focus on serving a regional clientele whereas a service land use may target motorists or pass-by vehicle trips for its customers. Even if the land uses are complementary, a lack of pedestrian, bicycling, and transit facilities or services limit non-vehicle travel.

Rural—agricultural or undeveloped except for scattered parcels and at very low densities.
Time Periods

Average Weekday—a continuous 24-hour period during Monday through Thursday. The period can bridge two days.

Average Weekday, Peak Hour of Adjacent Street Traffic—the one hour within the morning and evening weekday commuter peak periods when the combination of site-generated vehicle traffic and the traffic on the adjacent street is the highest (typically from data collected Monday through Friday). If the adjacent street traffic volumes are unknown, the peak hour of the adjacent street is assumed to be the one hour when the highest hourly vehicle trips are generated by the site during the weekday commuter peak periods between 7:00 and 9:00 a.m. or 4:00 and 6:00 p.m. Recent studies have indicated that these peak periods have expanded in some heavily populated areas.

Average Weekday, Peak Hour of Generator—the hour of highest volume of vehicle trips (or person trips, as appropriate) entering and exiting the site during the AM or PM on a weekday (typically from data collected Monday through Thursday). It may or may not coincide with the peak hour of the adjacent street traffic.

Friday, Peak Hour of Generator—the hour with the highest volume of vehicle trips (or person trips, as appropriate) entering and exiting a site on a Friday. It may occur during either the AM or PM.

Friday, Peak Hour of Adjacent Street Traffic—the one hour within the morning and evening commuter peak periods when the combination of site-generated vehicle traffic and the traffic on the adjacent street is the highest on a Friday. If the adjacent street traffic volumes are unknown, the peak hour of the adjacent street is assumed to be the one hour when the highest hourly vehicle trips are generated by the site during the commuter peak periods between 7:00 and 9:00 a.m. or 4:00 and 6:00 p.m.

Saturday, Midday Peak Hour of Generator—the hour with the highest volume of vehicle trips (or person trips, as appropriate) entering and exiting a site on a Saturday between 11 a.m. and 1 p.m.

Saturday, Peak Hour of Generator—the hour with the highest volume of vehicle trips (or person trips, as appropriate) entering and exiting a site on a Saturday. It may occur during either the AM or PM.

Sunday, Peak Hour of Generator—the hour with the highest volume of vehicle trips (or person trips, as appropriate) entering and exiting a site on a Sunday. It may occur in either the AM or PM.

Independent Variables

Acre—a unit of measurement equal to 43,560 sq. ft. and for the purpose of *Trip Generation Manual* used to quantify the total gross area of a development site (including land dedicated to public agencies). The distinction between total acres and total developed acres is not always clearly defined in the site acreage reported to ITE. Therefore, caution should be used with this variable. When submitting data, the analyst should indicate the percent of developed acreage and the total acreage of the property.

AM/PM Peak Hour Traffic on Adjacent Street—the highest hourly volumes of traffic on the adjacent streets during the AM and PM commuter peak periods, respectively (see Peak Hour of Adjacent Street Traffic under Time Periods). The value includes all traffic on streets abutting the site.
that have direct access to the development site. Where the site is serviced by some form of service roadway, the adjacent street definition includes any street that leads to the service road and thus may not actually be contiguous to the site. Traffic on travel lanes where road features physically restrict direct access to the development site is excluded.

Attendee—a person who is present on a given occasion, during a given event or at a given place.

Bed—a designated place to sleep for a group quarters resident or medical facility patient. An occupied bed is a bed for which there is an assigned person.

Bedroom—a designated room for sleeping with one or more beds.

Berth—a designated place where a boat can anchor at a marina or wharf.

Bowling Lane—a single lane available for the purposes of bowling.

Cage—a designated location available for the purpose of a single person hitting baseballs or softballs within a contained area.

Campsite—a place used for an overnight stay in the outdoors. An occupied campsite is a campsite that is currently being used.

Daily Customer—a person who visits a building in order to conduct personal business at any time during a single day.

Daily Trail User—a person who visits a park and walks along a designated trail at any time during a single day.

Drive-In Lane—an individual lane at a banking facility used for financial transactions. A lane used only for Automated Teller Machine (ATM) transactions is included.

Dwelling Unit—a residential location such as a house, apartment, condominium, townhouse, mobile home, or manufactured home in which people may live. An occupied dwelling unit is a dwelling unit in which people currently live.

Employee—a full-time, part-time, or per diem/contract worker. The number of employees refers to the total number of persons employed at a facility, not just those in attendance at the particular hour or day the data are collected.

Family Members—the total number of family members who are considered members of a specific worship facility. **Member** is a similar term.

Field—any area constructed, equipped, and/or marked for outdoor activities and sports.

Food Cart—a mobile kitchen that enables its operator to market and sell cooked food to customers.

Gaming Position (slot)—an individual seat at which a person may engage in a gaming activity at a slot machine.

Gross Floor Area (GFA)—the sum of the area of each floor level of a building (expressed in square feet), including cellars, basements, mezzanines, penthouses, corridors, lobbies, stores, and offices,
that are within the principal outside faces of exterior walls, not including architectural setbacks or projections. Included are all areas that have floor surfaces with clear standing head room (6 ft. 6 in. minimum) regardless of their use. With the exception of buildings containing enclosed malls or atriums, GFA is equal to gross leasable area and gross rentable area. Occupied gross floor area refers to GFA within the facility which is currently being utilized. If a ground-level area, or part thereof, within the principal outside faces of the exterior walls is not enclosed, this floor area is considered part of the overall GFA of the building. However, unroofed areas and unenclosed roofed-over spaces, except those contained within the principal outside faces of exterior walls, should be excluded from the area calculations. For the purpose of trip generation calculation, the floor area of all parking garages within the building should not be included in the GFA of the entire building. The majority of land uses in *Trip Generation Manual* use GFA as an independent variable.

Gross Leasable Area (GLA)—the total floor area designed for tenant occupancy and exclusive use, including any basements, mezzanines, or upper floors, expressed in square feet and measured from the centerline of joint partitions and from outside wall faces. For the purpose of trip generation calculation, the floor area of all parking garages within the building should not be included within the GLA of the entire building. GLA is the area for which tenants pay rent; it is the area that produces income for the property owner. Occupied gross leasable area refers to GLA within the facility which is currently in use. Leased space that is not in productive use is not considered occupied. In the retail business, GLA lends itself readily to measurement and comparison and it has been adopted by the shopping center industry as its standard for statistical comparison. Accordingly, GLA is used in *Trip Generation Manual* for shopping centers. For specialty retail centers, strip centers, discount stores and freestanding retail facilities, GLA usually equals GFA.

Hole—a single combination of a tee, fairway, and green on a golf course.

Member—an individual who belongs to a group or organization. **Family Members** is a similar term.

Member Family—a family that belongs to a group or organization.

Movie Screen—a room within a movie theater that contains seats and the presentation of a movie.

Municipal Population—a count of all persons having their primary residence within the municipality.

Net Rentable Area—the sum of floor square footage for all storage units in a self-storage facility. The term is currently used only for Land Use Code 151 (Mini-Warehouse).

Occupied Bed (see Bed)

Occupied Dwelling Unit (see Dwelling Unit)

Occupied Gross Floor Area (see Gross Floor Area)

Occupied Room (see Room)

Occupied Parking Space (see Parking Space)

Occupied Storage Unit (see Storage Unit)
Occupied Unit (see Unit)

Parking Space—an individual stall within a parking lot or garage designated for the use of a parked private motor vehicle. An occupied space is a parking space in which a vehicle is parked.

PM Peak Hour Traffic on Adjacent Street (see AM/PM Peak Hour Traffic on Adjacent Street)

Resident—a person who resides in the given dwelling unit.

Rink—an enclosed area for skating.

Room—the partitioned part of the inside of a building used for lodging such as a hotel or motel. An occupied room is a room that is rented by a lodging guest.

Seat—a place on which an individual can sit; multiple seats may be present on a bench or pew.

Service Bay—the location within an automobile servicing facility, building, or care center where a vehicle can be parked to be inspected and/or repaired.

Servicing Position—a location within a quick-lubrication vehicle shop or other vehicle repair shop at which a vehicle can be serviced. For example, if a quick-lubrication vehicle shop has one service bay that can service two vehicles at the same time, the number of servicing positions is two.

Slope—a single downhill cleared area on which a person can ski.

Storage Unit—a vault rented for the storage of goods in what is typically referred to as a self-storage facility. An occupied storage unit is one that is rented. Unit is a similar term with a different definition.

Student—a person enrolled in an institution such as a school, college, or day care center on either a full-time or part-time basis. The number of students refers to the total number of persons enrolled at a facility, not just those present at the time the study is conducted.

Tee, Driving Position—a designated position from which a golf ball is struck for practice.

Tennis Court—an indoor or outdoor facility specifically designed for an individual tennis match.

Unit—a group of rooms intended for dwelling within Land Use Code 255 (Continuing Care Retirement Community). An occupied unit is a unit for which a person is assigned. Storage Unit is a similar term with a different definition.

Vehicle—as used as an independent variable for residential land use codes includes any automobile, van, SUV, motorcycle, or light truck parked overnight within a residential area. For Land Use Code 501 (Military Base), the definition of vehicle is any vehicle authorized to enter the facility.

Vehicle Fueling Position—is defined by the number of vehicles that can be fueled simultaneously at a service station. For example, if a service station has two fuel dispensing pumps with hoses on each side of each pump, where only one vehicle can be fueled at a time on each side, the number of vehicle fueling positions is four.

Vendor—a single person or company offering something for sale.

Wash Stall—a location within either a self-service or automated car wash where a vehicle can be parked to be washed.
Data Page Terms

Average Number of [Independent Variable]—the average value of the independent variable for data presented on the specific data page.

Average Rate (or Weighted Average Rate or Average Trip Rate)—the weighted average number of vehicle or person trips entering or exiting a development site per one unit of the independent variable. It is calculated by dividing the sum of all trips for all contributing data point sites by the sum of all independent variable units for all contributing data point sites. The weighted average rate is used rather than the average of the individual rates because of the variance within each data set or generating unit. Data sets with a large variance will over-influence the average rate if they are not weighted. The data plot includes a dashed line corresponding to the weighted average rate, extending between the lowest and highest independent variable values for data points.

Trip Ends, T—vehicle or person trips, the dependent variable in the data plot; shown on the y-axis.

Coefficient of Determination (R²)—the percent of the variance in the number of trips associated with the variance in the independent variable value. If the R² value is 0.75, then 75 percent of the variance in the number of trips is accounted for by the variance in the size of the independent variable. As the R² value approaches 1.0 the better the fit; as the R² value approaches zero, the worse the fit.

Directional Distribution—the percent of total trips entering and exiting a site during the indicated time period.

Fitted Curve and Fitted Curve Equation—the single-variable regression analysis of the independent and dependent variable expressed in an optimal mathematical relationship. If the variables are related linearly, the equation has the following format: \(T = aX + b \). In a logarithmic relationship, the equation has the following format: \(\ln(T) = a \ln(X) + b \). The data plot includes a solid line corresponding to the equation, extending between the lowest and highest independent variable values for data points.

Independent Variable, X—a physical, measurable, and predictable characteristic that describes the study site or baseline site (for example, gross floor area) and that has a direct relationship to the variation in the number of trips generated by a land use. The term “explanatory variable” is also used.

Number of Studies—the total number of studies reported on the specific data page.

Range of Rates—the minimum and maximum trip generation rates from all the studies reported.

Standard Deviation—a measure of data dispersion relative to the calculated average. The lower the standard deviation, the less data dispersion there is in the data and the better the data fit to the average rate. In *Trip Generation Manual*, the reported standard deviation is based on the weighted average, not the mean.

Study Site—a data point plotted on the graph based on a study performed for the specific land use code.
The data analyzed in this document were contributed on a voluntary basis by various state and local governmental agencies, consulting firms, individual transportation professionals, universities and colleges; developers; associations; and local sections, districts, and student chapters of ITE. In many cases, the data were originally contained in published reports or unpublished analyses conducted by such groups. The sources of these reports or analyses are listed in Appendix A. The source numbers for studies contained in each land use are listed on the land use description pages in Chapter 5 of this Supplement.

ITE Headquarters conducted no original field surveys. The amount of data submitted for an individual site varied from as little as one peak-hour volume to seven days of directional hourly volumes. All data have been combined to maximize the size of the database for each land use and each time period. Data received were initially examined by ITE staff for validity and reasonableness before being entered into the comprehensive database.

Data Collection

Some of the data submitted were collected using automatic counters configured to count vehicular traffic entering and exiting a site. The sites selected for counting did not include through traffic, and counts were taken on driveways of sufficient length to avoid the double counting of turning vehicles. In some cases, counts were non-directional and therefore did not distinguish between entering and exiting vehicles. Manual counts often supplemented the automatic counts to obtain vehicle occupancy and classification, to check the reliability of the automatic counters, and to obtain directional counts during peak periods when a non-directional automatic count was being conducted. In other cases, only manual counts of vehicles or persons were conducted during peak periods. For some sites, the count data were supplemented by intercept surveys to determine travel modes of persons that enter or exit the site on foot.

Additional information regarding site characteristics was obtained through Internet searches, personal interviews, actual measurements, or telephone conversations.

Data Analysis and Storage

The statistical analyses conducted for the Trip Generation Manual were derived from a customized software program and database developed for ITE. Each data record was referenced in the database by a source number; the month and year of the vehicle or person count; the state or province; the setting/location; and a three-digit land use code. Data for all land uses are classified within 10 major land use categories. Additional land uses are continuously added to the database as data become available.
Data Age

The database contains data collected as early as 1980. As future editions are produced, the age of data will be evaluated and additional data will be considered for removal.
4 Description of Data Plots and Reported Statistics

Data Plots

For every land use, statistics and data plots are presented for at least one independent variable and for at least one time period. For the data plots presented in Chapter 5 for three land uses and in Chapter 10 for truck trips, the data pages are organized in the same manner as the vehicle and person data plots in the 10th Edition: first by setting, then by independent variable, and then by time period. The modal trip generation data plots presented in Chapters 6 through 9 are organized first by land use and then in the same order as above with one exception. The setting order is center city core followed by dense multi-use urban followed by general urban/suburban in order to start with settings with the higher walk, transit, and bicycle mode shares.

Data plots provide a fundamental display of the variance within the database. It should be emphasized that the data points represented on the plots are not trip generation rates; rather, they are the observed number of trips, plotted against the size of the independent variable.

Each data plot corresponds to a specific trip travel mode for a single combination of land use, land use subcategory, independent variable, time period, and setting. The standard data plot layout identifies each factor that defines the layout including the trip type. To supplement the trip type designation on the data plot, an image depicting the trip travel mode is included as a lightly-shaded watermark on the data plot.

Some plots may have the statement “Caution–Small Sample Size” printed above the plot area. This statement is displayed when five or fewer studies comprise the data set.

Some plots generated through the ITETripGen web app may also have the statement “Caution–Incomplete Data Set” printed above the plot area. This statement is displayed if the dataset used in the plot includes only a subset of the entire database based on the filtering criteria provided in the ITETripGen web app.

Reported Statistics

Average Trip Rate

The average trip generation rates displayed in this manual were calculated on the basis of a weighted average trip rate. The weighted average trip rate was used rather than the average of the individual rates because of the variance found within each data set. Sites with a large variance from the mean would have over-influenced the average rate had they not been weighted.

Standard Deviation for the Weighted Average Trip Rate

The standard deviation is a measure of how widely dispersed the data points are around the calculated average. The lower the standard deviation—meaning less dispersion in the data—the
better the data fit. In this document, the statistics reported are based on a “weighted average,” not an “arithmetic average.” Therefore, the standard deviation is an approximation and not statistically precise.

Regression Analysis

As noted above, each data plot (for every combination of land use, independent variable, time period, setting, and trip type) contains the weighted average rate and a line corresponding to the rate. For each plot containing at least four data points, ITE examined the potential for developing a regression relationship between trips and an independent variable. A curve with the best (i.e., highest) coefficient of determination \(R^2 \) was determined for each data plot. If the \(R^2 \) value is at least 0.50, the regression curve is posted on the data plot along with the fitted curve equation and its coefficient of determination. The coefficient of determination is defined as the percent of the variance in the number of the trips associated with the variance in the size of the independent variable. If the \(R^2 \) value is 0.75, then 75 percent of the variance in the number of trips is accounted for by the variance in the size of the independent variable. As the \(R^2 \) value increases toward 1.0, the better the fit; as the \(R^2 \) value decreases toward 0, the worse the fit.

Two general forms of a fitted curve equations are considered for the Supplement:

\[
T = aX + b \quad \text{(linear)}
\]

\[
\ln(T) = a\ln(X) + b \quad \text{(logarithmic)}
\]

It should be noted that there are several instances when the regression curve results in an equation with a significantly large y-intercept. Use of the equation may produce an illogical trip-end estimate for independent variable values that are significantly less than the average-sized value. For such a case, use caution in applying data and refer to Chapter 3, "Process for Estimating Trips Generated by a Study Site," of the *Trip Generation Handbook, 3rd Edition* for additional guidance.

Variations in the Statistics

Variations in trip generation characteristics for specific land uses are reflected in the range of rates, standard deviation, and coefficient of determination \(R^2 \) value. These variations may be due to a small sample size, individual marketing of the site, economic conditions of the business market, geographic location of the sites studied, or unique characteristics of the specific site. Accordingly, judgment must be exercised in the use of the statistics in this manual.

Other sources of variation include different lengths of traffic count duration and the time of year the traffic volumes were counted; that is, daily and seasonal variations may exist for some land uses. Further, variations may also exist based on geographic location. The ITETripGen web app allows users to examine filtered sets of data based on geographic location by regions within the U.S. as well as filtering both U.S. and Canadian sites.
Cautions

The plots presented in the *Trip Generation Manual* cover only the range of independent variables for which data are available. Caution should be used if extrapolating the data beyond the ranges provided because no information has been supplied to document trip generation characteristics beyond the given ranges.

For many land uses, the analyst can have strong confidence in the trip generation relationships presented in *Trip Generation Manual*, 10th Edition and its Supplement. For some land uses, a small data set may provide only an initial indication of trip generation. Each data plot with five or fewer data points displays the statement “Caution–Small Sample Size” above the plot area.

Even if the data plot is based on only a single data point, the data are provided as a reference point. ITE hopes that inclusion of even the smallest dataset may stimulate new data collection and submission, further filling the gaps in the current database.
New Land Use and Existing Land Uses with Substantial Expansion of Database

The Supplement has significantly expanded the trip generation database for the following two land uses: High-Cube Fulfillment Center Warehouse (155) and High-Cube Parcel Hub Warehouse (156).

For these three land uses, the order of the data plots mirrors that in the full 10th Edition: a complete set of vehicle trip data plots followed by person trip plots. Each set of trip type data plots is organized by setting/location: general urban/suburban followed by dense multi-use urban followed by center city core.

Land Use Description Pages

For each land use code, the standard reporting format starts with one or more pages of text and tables that describe the characteristics of the development sites in the given land use code. Following the text are one or more pages that contain data plots and associated statistics for the study sites in the land use code database.

Under the heading Land Use Description, a summary description is provided for the sites where the data were collected.

The section under the heading Additional Data presents several potential pieces of information as follows:

- The decades during which trip generation were collected
- The states and provinces for the study sites that comprise the land use code data points
- Time-of-day distribution of site-generated trips, if available

The section under the heading Sources lists the source numbers for the data points that comprise the database for the land use. Appendix A provides a complete source name for each source number.
Land Use: 155
High-Cube Fulfillment Center Warehouse

Description

A high-cube warehouse (HCW) is a building that typically has at least 200,000 gross square feet of floor area, has a ceiling height of 24 feet or more, and is used primarily for the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. A typical HCW has a high level of on-site automation and logistics management. The automation and logistics enable highly-efficient processing of goods through the HCW. High-cube fulfillment center warehouses include warehouses characterized by a significant storage function and direct distribution of ecommerce product to end users. These facilities typically handle smaller packages and quantities than other types of HCWs and often contain multiple mezzanine levels. Warehousing (Land Use 150), high-cube transload and short-term storage warehouse (Land Use 154), high-cube parcel hub warehouse (Land Use 156), and high-cube cold storage warehouse (Land Use 157) are related land uses.

Each fulfillment center in the ITE database has been categorized as either a sort or non-sort facility. A sort facility is a fulfillment center that ships out smaller items, requiring extensive sorting, typically by manual means. A non-sort facility is a fulfillment center that ships large box items that are processed primarily with automation rather than through manual means. Separate sets of data plots are presented for the sort and non-sort fulfillment centers.

Additional Data

The High-Cube Warehouse/Distribution Center-related land uses underwent specialized consideration through a commissioned study titled “High-Cube Warehouse Vehicle Trip Generation Analysis,” published in October 2016. The results of this study have been incorporated into the 10th Edition Trip Generation Manual and are posted on the ITE website at http://library.ite.org/pub/a3e6679a-e3a8-bf38-7f29-2961becdd498.

The sites were surveyed in the 2000s and the 2010s in California, New Jersey, and Texas.

Source Numbers

752, 941, 1001, 1002, 1011
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 886
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.81</td>
<td>0.88 - 3.34</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 2.00(X) - 173.61$ \[R^2 = 0.54 \]
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 22
Avg. 1000 Sq. Ft. GFA: 783
Directional Distribution: 81% entering, 19% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.03 - 0.62</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 22
Avg. 1000 Sq. Ft. GFA: 783
Directional Distribution: 39% entering, 61% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.01 - 0.62</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1

Avg. 1000 Sq. Ft. GFA: 818

Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.22 - 0.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot](image)

- **Study Site**
- **Average Rate**

Fitted Curve Equation: Not Given

\[R^2 = *** \]
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 818
Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.27 - 0.27</td>
<td>***</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: Not Given
R²: ***

Data Plot and Equation
Caution – Small Sample Size

![Data Plot and Equation](image-url)
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 818
Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.20 - 0.20</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 818
Directional Distribution: Not Available

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.16 - 0.16</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

R²= ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: Employees
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Employees: 678
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.77</td>
<td>1.71 - 6.61</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $\ln(T) = 0.77 \ln(X) + 2.52$

$R^2 = 0.73$
High-Cube Fulfillment Center Warehouse - Non-Sort

(155)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Employees: 678
Directional Distribution: 81% entering, 19% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.03 - 0.60</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Employees: 678
Directional Distribution: 39% entering, 61% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.03 - 0.70</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 1360
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.44</td>
<td>4.41 - 8.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1277
Directional Distribution: 81% entering, 19% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87</td>
<td>0.40 - 1.45</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1277
Directional Distribution: 39% entering, 61% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>0.55 - 1.98</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: Employees
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Employees: 4700
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>1.18 - 1.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[
X = \text{Number of Employees}
\]

\[
T = \text{Trips Ends}
\]

\[
R^2 = ***
\]

Study Site

Average Rate
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Employees: 4700
Directional Distribution: 81% entering, 19% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

R²= ***
High-Cube Fulfillment Center Warehouse - Sort (155)

Vehicle Trip Ends vs: Employees
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Employees: 4700
Directional Distribution: 39% entering, 61% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.15 - 0.15</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given

R²= ***

Caution – Small Sample Size
Land Use: 156
High-Cube Parcel Hub Warehouse

Description
A high-cube warehouse (HCW) is a building that typically has at least 200,000 gross square feet of floor area, has a ceiling height of 24 feet or more, and is used primarily for the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. A typical HCW has a high level of on-site automation and logistics management. The automation and logistics enable highly-efficient processing of goods through the HCW. High-cube parcel hub warehouses typically serve as regional and local freight-forwarder facilities for time sensitive shipments via airfreight and ground carriers. These sites also often include truck maintenance, wash, or fueling facilities. Warehousing (Land Use 150), high-cube transload and short-term storage warehouse (Land Use 154), high-cube fulfillment center warehouse (Land Use 155), and high-cube cold storage warehouse (Land Use 157) are related land uses.

Additional Data
The High-Cube Warehouse/Distribution Center-related land uses underwent specialized consideration through a commissioned study titled High-Cube Warehouse Vehicle Trip Generation Analysis, published in October 2016. The results of this study have been incorporated into the 10th Edition Trip Generation Manual and are published on the ITE website at http://library.ite.org/pub/a3e6679a-e3a8-bf38-7f29-2961becdd498 where the study is posted.

The sites were surveyed in the 2010s in California, Connecticut, and Minnesota.

Source Numbers
869, 892, 941, 1001, 1011
High-Cube Parcel Hub Warehouse
(156)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 543
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.63</td>
<td>0.95 - 14.38</td>
<td>5.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***

Study Site
Average Rate
High-Cube Parcel Hub Warehouse

(156)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4

Avg. 1000 Sq. Ft. GFA: 329

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>0.38 - 0.85</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 1.37(X) - 218.14 \)

\(R^2 = 0.93 \)
High-Cube Parcel Hub Warehouse (156)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 329
Directional Distribution: 68% entering, 32% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.26 - 0.86</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 1.41(X) - 254.12$ \(R^2 = 0.86 \)
High-Cube Parcel Hub Warehouse
(156)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 324
Directional Distribution: 34% entering, 66% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.57 - 1.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Cube Parcel Hub Warehouse (156)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 324
Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>0.44 - 0.95</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size
High-Cube Parcel Hub Warehouse
(156)

Vehicle Trip Ends vs: Employees
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Employees: 902
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.77</td>
<td>6.77 - 6.77</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Land Use: 223
Affordable Housing

Description
Affordable housing includes all multifamily housing that is rented at below market rate to households that include at least one employed member. Eligibility to live in affordable housing can be a function of limited household income and resident age. Multifamily housing (low-rise) (Land Use 220), multifamily housing (mid-rise) (Land Use 221), and multifamily housing (high-rise) (Land Use 222) are related land uses.

Additional Data
For the majority of study sites in this land use code, 100 percent of the dwelling units are considered affordable. For residential study sites that provide a mix of market value and affordable units, the study sites with at least 75 percent of the dwelling units designated as affordable are also included in this land use database.

Separate data plots and statistics are presented for two subsets of the affordable housing database: (1) sites with income limitations for its tenants and (2) sites with both minimum age thresholds and income limitations for its tenants (i.e., senior housing).

The sites were surveyed in the 2010s in California and New Jersey.

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. Trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex). Future studies should also indicate the number of levels contained in the residential building.

Source Numbers
1003, 1004
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Bedrooms: 219
Directional Distribution: 70% entering, 30% exiting

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.25 - 0.56</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Affordable Housing - Income Limits
(223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Bedrooms: 219
Directional Distribution: Not Available

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.21 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Dwelling Units: 97
Directional Distribution: 70% entering, 30% exiting

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td>0.52 - 1.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Dwelling Units: 97
Directional Distribution: Not Available

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.62</td>
<td>0.42 - 0.74</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Bedrooms: 130
Directional Distribution: Not Available

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.17 - 4.00</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.16(X) + 12.16 \)
\(R^2 = 0.81 \)
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Bedrooms: 130
Directional Distribution: Not Available

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.11 - 4.33</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.14(X) + 7.03$
$R^2 = 0.70$
Affordable Housing - Income Limits

(223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 18
Avg. Num. of Dwelling Units: 69
Directional Distribution: Not Available

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.10 - 0.82</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given
R² = ***
Affordable Housing - Income Limits (223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Dwelling Units: 69
Directional Distribution: Not Available

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.11 - 0.71</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given
R²= ***
Affordable Housing - Income Limits
(223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Bedrooms: 170
Directional Distribution: Not Available

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.06 - 0.24</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given

\[R^2 = *** \]
Affordable Housing - Income Limits
(223)

Vehicle Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Bedrooms: 170
Directional Distribution: Not Available

Vehicle Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.08 - 0.19</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R^2 = ***
Affordable Housing - Income Limits
(223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Dwelling Units: 77
Directional Distribution: Not Available

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39</td>
<td>0.13 - 0.52</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Dwelling Units
T = Trips Ends

Fitted Curve Equation: Not Given

R² = ***
Affordable Housing - Income Limits
(223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Dwelling Units: 77
Directional Distribution: Not Available

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.17 - 0.39</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$

Study Site

Average Rate
Affordable Housing - Senior (223)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Dwelling Units: 75
Directional Distribution: 70% entering, 30% exiting

Vehicle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53</td>
<td>0.53 - 0.53</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Affordable Housing - Income Limits

(223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Bedrooms: 219
Directional Distribution: Not Available

Person Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.66 - 0.99</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Affordable Housing - Income Limits

(223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Bedrooms: 219
Directional Distribution: Not Available

Person Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.58 - 0.62</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Affordable Housing - Income Limits (223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Dwelling Units: 97
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.97</td>
<td>1.36 - 2.35</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Affordable Housing - Income Limits (223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Dwelling Units: 97
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.34</td>
<td>1.29 - 1.36</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

- - - - Average Rate

R² = ***
Affordable Housing - Income Limits
(223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Bedrooms: 130
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Person Trip Generation per Bedroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.80</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.68(X) + 15.63 \)
\(R^2 = 0.84 \)
Affordable Housing - Income Limits
(223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Bedrooms: 130
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Person Trip Generation per Bedroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.64</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.55(X) + 12.01$

$R^2 = 0.69$
Affordable Housing - Income Limits (223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Dwelling Units: 69
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52</td>
<td>0.32 - 2.87</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Affordable Housing - Income Limits

(223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Dwelling Units: 69
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>0.37 - 2.97</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Average Rate

Study Site

Fitted Curve Equation: Not Given

R²= ***
Affordable Housing - Income Limits
(223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Bedrooms: 170
Directional Distribution: Not Available

Person Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.29 - 0.79</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Affordable Housing - Income Limits (223)

Person Trip Ends vs: Bedrooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Bedrooms: 170
Directional Distribution: Not Available

Person Trip Generation per Bedroom

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.35 - 0.55</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.88(X) - 69.86 \)
\(R^2 = 0.64 \)
Affordable Housing - Income Limits

(223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Dwelling Units: 77
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>0.60 - 1.63</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Affordable Housing - Income Limits
(223)

Person Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Dwelling Units: 77
Directional Distribution: Not Available

Person Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03</td>
<td>0.72 - 1.36</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
The table below lists the 53 land uses for which trip generation data for person trips considered walk, transit, or bicycle trips are available. Data plots are presented on the following pages for a single independent variable across all available time periods and settings. Data plots for additional independent variables are available in the ITETripGen web app for some land uses.

A land use denoted in the table with a "**" symbol indicates that trip generation data plots are available only in the ITETripGen web app. They are not reproduced in the hard-copy or electronic versions of the *ITE Trip Generation Manual*, 10th Edition Supplement.

The walk-transit-bicycle trip generation data plots and statistics for the AM and PM Peak Hour of Generator refer to the peak hour for total person trips generated by the site. This time period may or may not coincide with the peak hour of walk-transit-bicycle trips generated by the site.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Intermodal Truck Terminal*</td>
</tr>
<tr>
<td>140</td>
<td>Manufacturing*</td>
</tr>
<tr>
<td>154</td>
<td>High-Cube Transload and Short-Term Storage Warehouse*</td>
</tr>
<tr>
<td>220</td>
<td>Multifamily Housing (Low-Rise)</td>
</tr>
<tr>
<td>221</td>
<td>Multifamily Housing (Mid-Rise)</td>
</tr>
<tr>
<td>222</td>
<td>Multifamily Housing (High-Rise)</td>
</tr>
<tr>
<td>231</td>
<td>Mid-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td>232</td>
<td>High-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td>252</td>
<td>Senior Adult Housing—Attached</td>
</tr>
<tr>
<td>253</td>
<td>Congregate Care Facility</td>
</tr>
<tr>
<td>310</td>
<td>Hotel</td>
</tr>
<tr>
<td>312</td>
<td>Business Hotel</td>
</tr>
<tr>
<td>411</td>
<td>Public Park</td>
</tr>
<tr>
<td>430</td>
<td>Golf Course</td>
</tr>
<tr>
<td>437</td>
<td>Bowling Alley</td>
</tr>
<tr>
<td>470</td>
<td>Bingo Hall</td>
</tr>
<tr>
<td>488</td>
<td>Soccer Complex</td>
</tr>
<tr>
<td>491</td>
<td>Racquet/Tennis Club*</td>
</tr>
<tr>
<td>492</td>
<td>Health/Fitness Club</td>
</tr>
<tr>
<td>495</td>
<td>Recreational Community Center</td>
</tr>
<tr>
<td>499</td>
<td>Lodging (Land Uses 300–399)</td>
</tr>
<tr>
<td>300</td>
<td>Hotel</td>
</tr>
<tr>
<td>302</td>
<td>Business Hotel</td>
</tr>
<tr>
<td>411</td>
<td>Public Park</td>
</tr>
<tr>
<td>430</td>
<td>Golf Course</td>
</tr>
<tr>
<td>437</td>
<td>Bowling Alley</td>
</tr>
<tr>
<td>470</td>
<td>Bingo Hall</td>
</tr>
<tr>
<td>488</td>
<td>Soccer Complex</td>
</tr>
<tr>
<td>491</td>
<td>Racquet/Tennis Club*</td>
</tr>
<tr>
<td>492</td>
<td>Health/Fitness Club</td>
</tr>
<tr>
<td>495</td>
<td>Recreational Community Center</td>
</tr>
<tr>
<td>CODE</td>
<td>LAND USE</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>520</td>
<td>Elementary School</td>
</tr>
<tr>
<td>530</td>
<td>High School</td>
</tr>
<tr>
<td>540</td>
<td>Junior/Community College</td>
</tr>
<tr>
<td>550</td>
<td>University/College</td>
</tr>
<tr>
<td>560</td>
<td>Church</td>
</tr>
<tr>
<td>610</td>
<td>Hospital</td>
</tr>
<tr>
<td>620</td>
<td>Nursing Home</td>
</tr>
<tr>
<td>630</td>
<td>Clinic</td>
</tr>
<tr>
<td>710</td>
<td>General Office Building</td>
</tr>
<tr>
<td>720</td>
<td>Medical-Dental Office Building</td>
</tr>
<tr>
<td>750</td>
<td>Office Park</td>
</tr>
<tr>
<td>760</td>
<td>Research and Development Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>813</td>
<td>Free-Standing Discount Superstore</td>
</tr>
<tr>
<td>815</td>
<td>Free-Standing Discount Store</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
</tr>
<tr>
<td>843</td>
<td>Automobile Parts Sales</td>
</tr>
<tr>
<td>850</td>
<td>Supermarket</td>
</tr>
<tr>
<td>851</td>
<td>Convenience Market</td>
</tr>
<tr>
<td>853</td>
<td>Convenience Market with Gasoline Pumps</td>
</tr>
<tr>
<td>858</td>
<td>Farmers Market</td>
</tr>
<tr>
<td>862</td>
<td>Home Improvement Superstore</td>
</tr>
<tr>
<td>869</td>
<td>Discount Home Furnishing Superstore</td>
</tr>
<tr>
<td>876</td>
<td>Apparel Store</td>
</tr>
<tr>
<td>880</td>
<td>Pharmacy/Drugstore without Drive-Through Window</td>
</tr>
<tr>
<td>890</td>
<td>Furniture Store</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>926</td>
<td>Food Cart Pod</td>
</tr>
<tr>
<td>931</td>
<td>Quality Restaurant</td>
</tr>
<tr>
<td>932</td>
<td>High-Turnover (Sit-Down) Restaurant</td>
</tr>
<tr>
<td>933</td>
<td>Fast-Food Restaurant without Drive-Through Window</td>
</tr>
<tr>
<td>934</td>
<td>Fast-Food Restaurant with Drive-Through Window</td>
</tr>
<tr>
<td>937</td>
<td>Coffee/Donut Shop with Drive-Through Window</td>
</tr>
<tr>
<td>945</td>
<td>Gasoline/Service Station with Convenience Market</td>
</tr>
<tr>
<td>960</td>
<td>Super Convenience Market/ Gas Station</td>
</tr>
</tbody>
</table>
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.28 - 0.28</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- **Fitted Curve Equation:** Not Given
 - **R²:** ***

Caution – Small Sample Size

- X: Study Site
- — — —: Average Rate

X = Number of Occupied Dwelling Units

T = Trips Ends
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.28 - 0.28</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site

Fitted Curve Equation: Not Given

Average Rate

R² = ***
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.30 - 0.30</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. Num. of Dwelling Units: 301
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.11</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 7
Avg. Num. of Dwelling Units: 290
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- **Study Site**
- **Average Rate**

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Low-Rise)
(220)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 484
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (Low-Rise) (220)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 484
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$X = \text{Number of Occupied Dwelling Units}$

$T = \text{Trips Ends}$

X: Study Site

Walk-Transit-Bicycle Trip Generation Data Plots 79
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 10
Avg. Num. of Occupied Dwelling Units: 112
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.08 - 0.53</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise)
(221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 116
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0.10 - 0.82</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.29(X) + 6.62$
$R^2 = 0.63$
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.10 - 0.53</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[\text{Average Rate} = \frac{T}{X} \]

\[\text{Study Site} \quad \text{Average Rate} \]

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.10 - 0.47</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.37(X) - 2.93$
$R^2 = 0.77$
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Dwelling Units: 206
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.01 - 0.37</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.15(X) + 3.19 \)

\(R^2 = 0.86 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Dwelling Units: 214
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.07 - 0.35</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.31(X) - 12.30 \)
\(R^2 = 0.98 \)
Multifamily Housing (Mid-Rise)
(221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.05 - 0.23</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.19(X) - 1.17 \)
\(R^2 = 0.90 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.19 - 0.35</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.32(X) - 6.95 \)
\(R^2 = 0.97 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 24
Avg. Num. of Occupied Dwelling Units: 243
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.03 - 0.42</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.23(X) - 9.11 \)
\(R^2 = 0.72 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 21
Avg. Num. of Occupied Dwelling Units: 260
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.09 - 0.52</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.20(X) + 5.59 \)
\(R^2 = 0.79 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.07 - 0.42</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.22(X) - 4.32$
$R^2 = 0.68$
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.09 - 0.33</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.21(X) + 1.90 \)
\(R^2 = 0.81 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 159
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.08</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$

Study Site
Average Rate

X = Number of Dwelling Units
T = Trips Ends
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 6
Avg. Num. of Dwelling Units: 147
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.31</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise)
(221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 0.12</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.12(X) - 4.99 \)

\(R^2 = 0.99 \)
Multifamily Housing (Mid-Rise)
(221)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.03 - 0.31</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.19(X) - 3.89 \)
\(R^2 = 0.99 \)
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.01 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 2

Avg. Num. of Occupied Dwelling Units: 336

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.03 - 0.06</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- **Study Site**
- **Average Rate**

Fitted Curve Equation: Not Given

$R^2 = ***$
Multifamily Housing (Mid-Rise) (221)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.04 - 0.06</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.03 - 0.31</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise)
(222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.06 - 0.26</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Multifamily Housing (High-Rise) (222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.11 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.13 - 0.26</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (High-Rise)

(222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 289
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.11 - 0.42</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.35(X) - 9.12 \)
\(R^2 = 0.80 \)
Multifamily Housing (High-Rise) (222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 199
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.14 - 0.44</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units

Study Site

Average Rate
Multifamily Housing (High-Rise)
(222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban

Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.11 - 0.42</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.36(X) - 13.03 \)
\(R^2 = 0.77 \)
Multifamily Housing (High-Rise) (222)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.14 - 0.44</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.38(X) - 15.59 \)

\(R^2 = 0.83 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 223
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td>0.33 - 2.50</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.66(X) + 80.88 \)
\(R^2 = 0.66 \)
Mid-Rise Residential with 1st-Floor Commercial

(231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 150
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37</td>
<td>1.07 - 3.26</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.85(X) + 77.23 \)

\(R^2 = 0.94 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td>0.33 - 2.50</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.84(X) + 37.28 \) \(R^2 = 0.68 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.49</td>
<td>0.44 - 3.26</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 1.35(X) + 28.82 \)

\(R^2 = 0.51 \)
Mid-Rise Residential with 1st-Floor Commercial

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Occupied Dwelling Units: 213
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>0.17 - 1.64</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 169
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.55</td>
<td>0.88 - 2.96</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate
- Fitted Curve Equation: Not Given

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>0.17 - 1.82</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$

Study Site
Average Rate

X = Number of Occupied Dwelling Units
$T = $ Trips Ends
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.60</td>
<td>0.39 - 4.15</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Dwelling Units: 211
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.30 - 0.30</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Dwelling Units: 211
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.32</td>
<td>1.32 - 1.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

[Graph showing the relationship between number of dwelling units and walk-transit-bike trip generation, with a fitted curve not given and R² not calculated.]
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Dwelling Units: 211
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.82</td>
<td>2.82 - 2.82</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = Number of Dwelling Units
T = Trips Ends

Study Site
Average Rate

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.13 - 1.27</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site
Average Rate

X = Number of Occupied Dwelling Units
T = Trips Ends
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 235
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.06 - 1.28</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 2.09(X) - 324.15$

$R^2 = 0.86$
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 308
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>1.27 - 1.27</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***

Study Site
Average Rate

X = Number of Occupied Dwelling Units

T = Trips Ends

0 100 200 300 400
0 100 200 300 400

Walk+Transit-Bicycle Trip Generation Data Plots
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.06 - 1.28</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

Average Rate

$R^2 = ***$
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 126
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>0.51 - 0.51</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>0.38 - 0.51</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial
(232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.73</td>
<td>0.22 - 0.91</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.33 - 0.95</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

\[R^2 = *** \]
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 335
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.43 - 0.44</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.33 - 0.95</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk+Bike+Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.43 - 0.76</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Senior Adult Housing - Attached (252)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Dwelling Units: 71
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Congregate Care Facility (253)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Dwelling Units: 99
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = \text{Number of Dwelling Units} \]

\[T = \text{Trips Ends} \]

\[\text{Average Rate} \]

\[R^2 = *** \]
Congregate Care Facility (253)

Walk+Bike+Transit Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Dwelling Units: 116
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Hotel (310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Rooms: 327
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.83</td>
<td>0.83 - 0.83</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Hotel (310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Rooms: 327
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.21</td>
<td>1.21 - 1.21</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[
R^2 = ***
\]
Hotel
(310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. Num. of Rooms: 249
Directional Distribution: 46% entering, 54% exiting

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.43 - 0.69</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Hotel
(310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 100
Directional Distribution: 36% entering, 64% exiting

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.28 - 0.28</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***

Caution – Small Sample Size
Hotel (310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 397
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.43 - 0.43</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot](image)

- **X**: Study Site
- **Average Rate**
- **Fitted Curve Equation: Not Given**
- **R²**: ***
Hotel (310)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 397
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.88 - 0.88</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78</td>
<td>0.78 - 0.78</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Rooms

Fitted Curve Equation: Not Given

R²= ***
Business Hotel (312)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78</td>
<td>0.78 - 0.78</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Business Hotel (312)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.50 - 0.50</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot]

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
Business Hotel
(312)

Walk+Bike+Transit Trip Ends vs: Rooms

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. Num. of Rooms: 97
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Business Hotel (312)

Walk+Bike+Transit Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Rooms: 97
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Public Park
(411)

Walk+Bike+Transit Trip Ends vs: Acres
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Acres: 246
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.05 - 0.13</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Public Park
(411)
Walk+Bike+Transit Trip Ends vs: Acres
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Acres: 18
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.98</td>
<td>1.98 - 1.98</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Golf Course (430)

Walk+Bike+Transit Trip Ends vs: Holes
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Holes: 18
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Hole

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.17 - 0.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Bowling Alley (437)

Walk+Bike+Transit Trip Ends vs: Bowling Lanes
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Bowling Lanes: 40
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Bowling Lane

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Bingo Hall
(470)

Walk+Bike+Transit Trip Ends vs: Attendees
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Attendees: 482
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Attendee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Bingo Hall (470)

Walk+Bike+Transit Trip Ends vs: Attendees

On a: Weekday,

PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1

Avg. Num. of Attendees: 482

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Attendee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
Soccer Complex
(488)
Walk+Bike+Transit Trip Ends vs: Fields
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Fields: 20
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10 - 0.10</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

X = Number of Fields
T = Trips Ends

R² = ***
Soccer Complex
(488)

Walk+Bike+Transit Trip Ends vs: Fields
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Fields: 20
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.20 - 0.20</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Fields
T = Trips Ends

Fitted Curve Equation: Not Given

R² = ***
Soccer Complex
(488)

Walk+Bike+Transit Trip Ends vs: Fields
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Fields: 20
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.15 - 0.15</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Health/Fitness Club
(492)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.27 - 0.27</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
Health/Fitness Club
(492)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>0.86 - 0.86</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[\text{R}^2 = *** \]
Recreational Community Center (495)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 225
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.03 - 0.06</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***

Caution – Small Sample Size
Recreational Community Center (495)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 245
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.07 - 0.20</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.21(X) - 15.53$

$R^2 = 0.71$
Recreational Community Center
(495)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 265
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.01 - 0.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Recreational Community Center (495)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 245
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.07 - 0.20</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.21X - 15.53 \)
\[R^2 = 0.71 \]
Elementary School (520)

Walk+Bike+Transit Trip Ends vs: Students
On: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 10
Avg. Num. of Students: 431
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.07 - 0.53</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Students
T = Trips Ends

Fitted Curve Equation: Not Given
R²= ***
Elementary School
(520)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 10
Avg. Num. of Students: 431
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.07 - 0.53</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[X = \text{Number of Students} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Students: 696
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High School
(530)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Students: 696
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

Study Site

Average Rate

R²= ***
High School (530)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 1750
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.20 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Junior/Community College (540)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Students: 535
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05 - 0.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Students: 535
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.14 - 0.14</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size
University/College (550)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 37007
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.10 - 0.13</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

X = Number of Students
T = Trips Ends

Fitted Curve Equation: Not Given

R² = ***
Walk+Bike+Transit Trip Ends vs: Students

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Students: 37007
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.09 - 0.12</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- Study Site
- Fitted Curve Equation: Not Given
- \(R^2 = *** \)
University/College (550)

Walk+Bike+Transit Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 3,7007
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.09 - 0.12</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 24
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.32</td>
<td>1.32 - 1.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Church (560)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

- Number of Studies: 2
- Avg. 1000 Sq. Ft. GFA: 21
- Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.23 - 1.24</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation
Caution – Small Sample Size

- Fitted Curve Equation: Not Given
- R² = ***
- Average Rate
- Study Site

Trip Generation Manual, 10th Edition Supplement
Hospital
(610)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 2391
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.22 - 0.40</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.42(X) - 186.64$ \(R^2 = 0.98 \)
Hospital
(610)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 923
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.06 - 0.12</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.11(X) - 3.25 \)
\(R^2 = 1.00 \)
Nursing Home (620)

Walk+Bike+Transit Trip Ends vs: Beds
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Beds: 119
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Nursing Home
(620)

Walk+Bike+Transit Trip Ends vs: Beds
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Beds: 153
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.03 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\(R^2 = *** \)
Clinic (630)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22</td>
<td>2.22 - 2.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Clinic (630)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.37</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Clinic (630)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61</td>
<td>0.00 - 2.84</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 4.03(X) - 6.62$ \(R^2 = 0.90 \)
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.04 - 1.26</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 1.01(X) - 59.37 \)
\(R^2 = 0.67 \)
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>0.18 - 1.09</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: \(T = 0.82(X) - 24.63 \)
\(R^2 = 0.59 \)
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.27 - 1.26</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.91(X) - 25.81$

$R^2 = 0.63$
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>0.27 - 1.09</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.74(X) + 4.46 \)
\(R^2 = 0.54 \)
General Office Building
(710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.33</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.39(X) - 11.22 \)
\(R^2 = 0.83 \)
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>0.00 - 0.81</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.35(X) - 4.87 \)

\(R^2 = 0.69 \)
General Office Building
(710)
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.10 - 0.80</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 156
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.00 - 3.17</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
General Office Building
(710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 152
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.01 - 5.09</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 257
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.05 - 0.25</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.17(X) - 4.65 \)
\(R^2 = 0.78 \)
General Office Building
(710)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 300
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.09 - 0.24</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.17(X) - 6.12 \)

\(R^2 = 0.68 \)
Medical-Dental Office Building (720)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 41
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.12 - 0.12</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

R²= ***
Medical-Dental Office Building (720)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 41
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.17 - 0.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Medical-Dental Office Building (720)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 41
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.17 - 0.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

Study Site

Average Rate

R²= ***
Office Park (750)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 39
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.03 - 0.56</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA
T = Trips Ends

Fitted Curve Equation: Not Given

R²= ***
Office Park (750)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 39
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66</td>
<td>0.29 - 0.99</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot](image)

Fitted Curve Equation: Not Given

Caution – Small Sample Size

```
X = 1000 Sq. Ft. GFA

T = Trips Ends
```

```
Study Site
Fitted Curve Equation: Not Given
```

```
Average Rate
R² = ***
```
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 120
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 0.63</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 129
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.05 - 0.15</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.11(X) - 0.78 \)
\(R^2 = 0.76 \)
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 94
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 135
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.23</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Free-Standing Discount Superstore (813)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 118
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.58 - 0.58</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
Free-Standing Discount Superstore (813)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 152
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.30 - 0.30</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Free-Standing Discount Store (815)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 113
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.23 - 0.23</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Free-Standing Discount Store
(815)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 87
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.18 - 0.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GLA: 11
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.36</td>
<td>7.36 - 7.36</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation
Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given
R²= ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 450
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.24</td>
<td>0.86 - 9.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.52 \ln(X) + 3.26 \)
\[R^2 = 0.91 \]
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>0.18 - 1.17</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***

Study Site
Average Rate

X = 1000 Sq. Ft. GLA
Shopping Center
(820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>0.86 - 1.91</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GLA: 102
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.52</td>
<td>1.19 - 3.46</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GLA: 366
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.02 - 1.14</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 20
Avg. 1000 Sq. Ft. GLA: 260
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.00 - 1.50</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.15(X) + 16.80$
$R^2 = 0.83$
Shopping Center
(820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 23
Avg. 1000 Sq. Ft. GLA: 251
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Shopping Center (820)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GLA: 98
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>0.22 - 1.81</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Automobile Parts Sales (843)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 13
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.16 - 0.16</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 28
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.09</td>
<td>5.06 - 5.12</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 28
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.44</td>
<td>7.56 - 11.76</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 26
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.95</td>
<td>1.23 - 16.83</td>
<td>5.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Supermarket
(850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 61
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.11</td>
<td>1.11 - 1.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Supermarket
(850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 61
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>0.89 - 0.89</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

- Number of Studies: 1
- Avg. 1000 Sq. Ft. GFA: 137
- Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.07 - 0.07</td>
<td>***</td>
</tr>
</tbody>
</table>

- **Data Plot and Equation**
 - **Caution – Small Sample Size**
 - **Fitted Curve Equation:** Not Given
 - **R²:** ***

Trip Generation Manual, 10th Edition Supplement
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 137
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.06 - 0.06</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Supermarket (850)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 2

Avg. 1000 Sq. Ft. GFA: 33

Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.82</td>
<td>1.52 - 1.88</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Graph showing trip generation data](image)

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
Convenience Market (851)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>1.25 - 12.11</td>
<td>4.55</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 138.02(X) - 322.12 \)
\(R^2 = 0.86 \)
Convenience Market
(851)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.02</td>
<td>4.58 - 13.28</td>
<td>4.75</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***

Study Site
Average Rate
Convenience Market
(851)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.67</td>
<td>0.00 - 22.82</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
$R^2 = ***$
Convenience Market with Gasoline Pumps (853)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.23</td>
<td>2.23 - 2.23</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.25</td>
<td>0.00 - 10.49</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Farmers Market (858)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.81</td>
<td>32.81 - 32.81</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Farmers Market (858)

Walk+Bike+Transit Trip Ends vs: Vendors
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Vendors: 90
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Vendor

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.84</td>
<td>9.84 - 9.84</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Farmers Market (858)

Walk+Bike+Transit Trip Ends vs: Acres
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Acres: 2
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.96</td>
<td>40.08 - 102.14</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Farmers Market (858)

Walk+Bike+Transit Trip Ends vs: Acres
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Acres: 2
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.01</td>
<td>41.27 - 134.19</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore
(862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 108
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>2.32</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***

Study Site

Average Rate

X = 1000 Sq. Ft. GFA
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.
Setting/Location: Center City Core
 Number of Studies: 1
 Avg. 1000 Sq. Ft. GFA: 108
 Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.32</td>
<td>7.32 - 7.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 108
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot](image)

- **X** Study Site
- **Average Rate**
- **Fitted Curve Equation:** Not Given
- **R^2:** ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.23 - 1.43</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

Average Rate

R²= ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.82</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.46</td>
<td>0.43 - 2.58</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 4.00(X) - 336.98$
$R^2 = 0.53$
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 138
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.43 - 0.43</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

R² = ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.13</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.19</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.03 - 0.56</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 94
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Discount Home Furnishing Superstore (869)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 280
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.18 - 0.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Apparel Store
(876)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 45
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.31 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Apparel Store (876)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 45
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>0.96 - 0.96</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Pharmacy/Drugstore without Drive-Through Window (880)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 15
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.91</td>
<td>2.89 - 10.80</td>
<td>4.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site
Furniture Store (890)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Furniture Store (890)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Walk+Bike+Transit Trip Ends vs: Food Carts
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Food Carts: 9
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Food Cart

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.62</td>
<td>0.74 - 11.43</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Food Cart Pod
(926)

Walk+Bike+Transit Trip Ends vs: Food Carts
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 8
Avg. Num. of Food Carts: 9
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Food Cart

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.91</td>
<td>2.29 - 40.00</td>
<td>5.18</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]

X Study Site
Average Rate

Trip Generation Manual, 10th Edition Supplement
Quality Restaurant (931)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.27</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site
Average Rate
High-Turnover (Sit-Down) Restaurant (932)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0.40 - 0.40</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
High-Turnover (Sit-Down) Restaurant (932)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.45 - 0.45</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Fast-Food Restaurant without Drive-Through Window (933)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.43 - 0.43</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

(Blank Plot with Study Site and Average Rate marked)

Caution – Small Sample Size

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.80</td>
<td>5.00 - 59.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = 1000 \text{ Sq. Ft. GFA} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
Fast Food Restaurant with Drive Through Window (934)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.20</td>
<td>19.00 - 90.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
Fast Food Restaurant with Drive Through Window (934)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.47</td>
<td>0.00 - 5.20</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***

Study Site
Average Rate
Fast Food Restaurant with Drive Through Window
(934)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.82</td>
<td>0.00 - 4.65</td>
<td>2.56</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Coffee/Donut Shop with Drive-Through Window (937)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.92</td>
<td>14.01 - 51.67</td>
<td>16.28</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.77</td>
<td>5.60 - 13.68</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.92</td>
<td>14.01 - 51.67</td>
<td>16.28</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>6.86 - 6.86</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given

R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.71</td>
<td>5.71 - 5.71</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Gasoline/Service Station With Convenience Market (945)

Walk+Bike+Transit Trip Ends vs: Employees

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Employees: 7
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per Employee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Super Convenience Market/Gas Station (960)

Walk+Bike+Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk+Bike+Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.31 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Walk Trip Generation Data Plots

The table below lists the 44 land uses for which walk trip generation data are available. Data plots are presented on the following pages for a single independent variable across all available time periods and settings. Data plots for additional independent variables are available in the ITETripGen web app for some land uses.

A land use denoted in the table with a "*" symbol indicates that trip generation data plots are available only in the ITETripGen web app. They are not reproduced in the hard-copy or electronic versions of the *ITE Trip Generation Manual*, 10th Edition Supplement.

The walk trip generation data plots and statistics for the AM and PM Peak Hour of Generator refer to the peak hour for total person trips generated by the site. This time period may or may not coincide with the peak hour of walk trips generated by the site.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial (Land Uses 100–199)</td>
<td></td>
<td>Recreational (Land Uses 400–499)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154</td>
<td>High-Cube Transload and Short-Term Storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warehouse*</td>
</tr>
<tr>
<td>220</td>
<td>Residential (Land Uses 200–299)</td>
<td>221</td>
<td>Multifamily Housing (Mid-Rise)</td>
</tr>
<tr>
<td>222</td>
<td></td>
<td>231</td>
<td>Multifamily Housing (High-Rise)</td>
</tr>
<tr>
<td>231</td>
<td></td>
<td>232</td>
<td>Mid-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td>232</td>
<td></td>
<td></td>
<td>High-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td></td>
<td>Lodging (Land Uses 300–399)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Hotel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>LAND USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>Nursing Home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>Clinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>General Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>Medical-Dental Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>Office Park</td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>Research and Development Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>Free-Standing Discount Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>843</td>
<td>Automobile Parts Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>Supermarket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>851</td>
<td>Convenience Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>Convenience Market with Gasoline Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>858</td>
<td>Farmers Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>862</td>
<td>Home Improvement Superstore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>869</td>
<td>Discount Home Furnishing Superstore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>876</td>
<td>Apparel Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>890</td>
<td>Furniture Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>926</td>
<td>Food Cart Pod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>931</td>
<td>Quality Restaurant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>High-Turnover (Sit-Down) Restaurant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>Fast-Food Restaurant without Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>Fast-Food Restaurant with Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>937</td>
<td>Coffee/Donut Shop with Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>Super Convenience Market/Gas Station</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multifamily Housing (Low-Rise) (220)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Occupied Dwelling Units

Fitted Curve Equation: Not Given

\[T = \text{Trips Ends} \]

\[X = \text{Number of Occupied Dwelling Units} \]

Study Site

Average Rate

\[R^2 = *** \]
Multifamily Housing (Low-Rise)

(220)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Occupied Dwelling Units
T = Trips Ends

Study Site
Average Rate

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (Low-Rise) (220)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.19 - 0.19</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

Average Rate

\[R^2 = *** \]
Multifamily Housing (Low-Rise) (220)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. Num. of Dwelling Units: 301
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.11</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

[Graph showing trip generation rates with study sites and average rate fitted curve equation: Not Given. R² = ***]
Multifamily Housing (Low-Rise) (220)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 7
Avg. Num. of Dwelling Units: 290
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Low-Rise)
(220)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 484
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Low-Rise) (220)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 484
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$X = \text{Number of Occupied Dwelling Units}$

- - - - Average Rate

$R^2 = ***$
Multifamily Housing (Mid-Rise)
(221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 10
Avg. Num. of Occupied Dwelling Units: 112
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.06 - 0.21</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.81 \ln(X) - 1.24 \)
\(R^2 = 0.52 \)
Multifamily Housing (Mid-Rise)
(221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 116
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.09 - 0.74</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.23(X) + 5.68$
$R^2 = 0.54$
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.08 - 0.20</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.43 \ln(X) + 0.74 \)
\(R^2 = 0.57 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per Occupied Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.24</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.34(X) - 13.42 \)
\(R^2 = 0.73 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Dwelling Units: 206
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.01 - 0.37</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.05(X) + 8.03$
$R^2 = 0.59$
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 6
Avg. Num. of Dwelling Units: 214
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.07 - 0.31</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.14(X) + 1.89$
$R^2 = 0.93$
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.05 - 0.19</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.89 \ln(X) - 1.78 \)
\[R^2 = 0.82 \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.13 - 0.31</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.88 \ln(X) - 1.03 \)
\(R^2 = 0.94 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 24
Avg. Num. of Occupied Dwelling Units: 243
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.01 - 0.26</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.06(X) + 4.21$
$R^2 = 0.58$
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 21
Avg. Num. of Occupied Dwelling Units: 260
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.04 - 0.28</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.09(X) + 8.34 \)

\(R^2 = 0.67 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.05 - 0.26</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.68 \ln(X) - 0.68 \)

\(R^2 = 0.53 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.04 - 0.19</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.10(X) + 5.52$

$R^2 = 0.69$
Multifamily Housing (Mid-Rise)
(221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. Num. of Dwelling Units: 159
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 6

Avg. Num. of Dwelling Units: 147

Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.23</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- **Study Site**
- **Average Rate**

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.11</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.12(X) - 4.76$

$R^2 = 0.99$
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Walk Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.02 - 0.23</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.16(X) - 3.53 \)

\(R^2 = 0.99 \)
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given

\[T = \text{Trips Ends} \]
\[X = \text{Number of Occupied Dwelling Units} \]

Average Rate

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[T = \text{Number of Occupied Dwelling Units} \]

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.02 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Occupied Dwelling Units

Study Site
Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.02 - 0.29</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.05 - 0.26</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$X = \text{Number of Occupied Dwelling Units}$

$T = \text{Trips Ends}$

$R^2 = ***$
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.07 - 0.29</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.07 - 0.26</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units

X = Study Site

Average Rate

R^2 = ***
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 289
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.08 - 0.26</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***

Study Site

Average Rate

X: Number of Occupied Dwelling Units

T: Trips Ends

0 100 200 300 400 500
0 20 40 60 80

Trip Generation Manual, 10th Edition Supplement
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 199
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.10 - 0.29</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.08 - 0.26</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.18X + 0.86$

$R^2 = 0.67$
Multifamily Housing (High-Rise) (222)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.10 - 0.29</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.28(X) - 13.32 \)
\(R^2 = 0.86 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 223
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.29 - 2.22</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given
R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 150
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>0.95 - 2.65</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.77(X) + 67.24$

$R^2 = 0.95$
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.29 - 2.22</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.59(X) + 40.69 \)

\[R^2 = 0.56 \]
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>0.32 - 2.66</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$

Study Site
Average Rate

$X = \text{Number of Occupied Dwelling Units}$

$T = \text{Trips Ends}$
Mid-Rise Residential with 1st-Floor Commercial
(231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Occupied Dwelling Units: 213
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.12 - 1.17</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 169
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>0.39 - 1.83</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X: Study Site
Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units
T = Trips Ends

Average Rate

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.12 - 1.30</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

\[X = \text{Number of Occupied Dwelling Units} \]

\[T = \text{Trips Ends} \]

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13</td>
<td>0.24 - 3.12</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[X = \text{Number of Occupied Dwelling Units} \]

\[T = \text{Trips Ends} \]

\[\text{Average Rate} \]

\[R^2 = *** \]

Study Site

Average Rate
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.07 - 0.34</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 235
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.03 - 0.49</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.83(X) - 129.65 \)

\(R^2 = 0.88 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 308
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.34 - 0.34</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Mid-Rise Residential with 1st-Floor Commercial (231)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.03 - 0.49</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 126
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.46 - 0.46</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.27 - 0.46</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

$R^2 = ***$
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.21 - 0.74***</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.21 - 0.67</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 335
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.28 - 0.33</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.21 - 0.67</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Walk Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Walk Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.28 - 0.57</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site

Average Rate
Walk Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Rooms: 327
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.74</td>
<td>0.74 - 0.74</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Hotel
(310)

Walk Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Rooms: 327
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05</td>
<td>1.05 - 1.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Hotel (310)

Walk Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1
Avg. Num. of Rooms: 397
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>0.38 - 0.38</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

X = Number of Rooms
T = Trips Ends

Average Rate

R² = ***
Hotel (310)

Walk Trip Ends vs: Rooms

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1
Avg. Num. of Rooms: 397
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>0.38 - 0.38</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Graph showing walk trip generation per room](image)

- **Fitted Curve Equation:** Not Given
- **R²:** ***
- **Study Site**
- **Average Rate**

324 Trip Generation Manual, 10th Edition Supplement
Hotel (310)

Walk Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 397
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69</td>
<td>0.69 - 0.69</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Business Hotel
(312)

Walk Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75 - 0.75</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Business Hotel (312)

Walk Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75 - 0.75</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Walk Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Rooms: 147
Directional Distribution: Not Available

Walk Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.45 - 0.45</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Golf Course (430)

Walk Trip Ends vs: Holes
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Holes: 18
Directional Distribution: Not Available

Walk Trip Generation per Hole

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Bowling Alley
(437)

Walk Trip Ends vs: Bowling Lanes
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Bowling Lanes: 40
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per Bowling Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation
Caution – Small Sample Size

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given
R²= ***
Bingo Hall
(470)

Walk Trip Ends vs: Attendees
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Attendees: 482
Directional Distribution: Not Available

Walk Trip Generation per Attendee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

Average Rate

R² = ***
Bingo Hall
(470)

Walk Trip Ends vs: Attendees
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Attendees: 482
Directional Distribution: Not Available

Walk Trip Generation per Attendee

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Soccer Complex
(488)

Walk Trip Ends vs: Fields
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Fields: 20
Directional Distribution: Not Available

Walk Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05 - 0.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

Average Rate

R² = ***
Soccer Complex (488)

Walk Trip Ends vs: Fields

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

- Number of Studies: 1
- Avg. Num. of Fields: 20
- Directional Distribution: Not Available

Walk Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10 - 0.10</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot](image)

- Fitted Curve Equation: Not Given
- $R^2 = ***$
- Study Site
- Average Rate

Trip Generation Manual, 10th Edition Supplement
Soccer Complex (488)

Walk Trip Ends vs: Fields
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Fields: 20
Directional Distribution: Not Available

Walk Trip Generation per Field

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.15 - 0.15</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

\[T = \text{Trips Ends} \]
\[X = \text{Number of Fields} \]

Study Site

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Health/Fitness Club
(492)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.27 - 0.27</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Health/Fitness Club
(492)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>0.86 - 0.86</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Recreational Community Center (495)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 225
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.01 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = 1000 \text{ Sq. Ft. GFA} \]

Study Site

Average Rate

\[R^2 = *** \]
Recreational Community Center (495)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 245
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.07 - 0.13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.21(X) - 26.59$
$R^2 = 0.96$
Recreational Community Center
(495)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 265
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation
Caution – Small Sample Size

- Study Site
- Average Rate

Fitted Curve Equation: Not Given
$R^2 = ***$
Recreational Community Center (495)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 245
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.07 - 0.13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.21(X) - 26.59 \)
\(R^2 = 0.96 \)
Elementary School
(520)

Walk Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Students: 616
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.14 - 0.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot]

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Elementary School (520)

Walk Trip Ends vs: Students
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 616
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.14 - 0.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size
High School (530)

Walk Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Students: 696
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

R² = ***
High School
(530)

Walk Trip Ends vs: Students
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Students: 696
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
High School
(530)

Walk Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 1750
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.19 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Junior/Community College (540)

Walk Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. Num. of Students: 535
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05 - 0.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Junior/Community College (540)

Walk Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Students: 535
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.14 - 0.14</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

X = Number of Students
T = Trips Ends

R² = ***
University/College (550)

Walk Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Students: 37007
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.01 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

\[X = \text{Number of Students} \]

\[T = \text{Trips Ends} \]

\[\text{Fitted Curve Equation: Not Given} \]

\[R^2 = *** \]
Walk Trip Ends vs: Students
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 37007
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.02 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
University/College (550)

Walk Trip Ends vs: Students
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Students: 37007
Directional Distribution: Not Available

Walk Trip Generation per Student

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.02 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = Number of Students

Fitted Curve Equation: Not Given

R² = ***
Church
(560)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 24
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.32</td>
<td>1.32 - 1.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R^2 = ***
Church
(560)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 21
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.23 - 1.24</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Hospital (610)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 2391
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.04 - 0.12</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.14(X) - 86.73 \)
\(R^2 = 0.99 \)
Hospital (610)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 923
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.04(X) - 0.82 \)
\(R^2 = 0.87 \)
Nursing Home (620)

Walk Trip Ends vs: Beds
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Beds: 119
Directional Distribution: Not Available

Walk Trip Generation per Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = \text{Number of Beds} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
Nursing Home (620)

Walk Trip Ends vs: Beds
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Beds: 153
Directional Distribution: Not Available

Walk Trip Generation per Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.03 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Clinic (630)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.22</td>
<td>2.22 - 2.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Clinic (630)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.37</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Clinic (630)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61</td>
<td>0.00 - 2.84</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 4.03(X) - 6.62$

$R^2 = 0.90$
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>0.01 - 0.47</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.48(X) - 50.09 \)
\(R^2 = 0.79 \)
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core

Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.00 - 0.57</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.31(X) - 18.19 \)
\(R^2 = 0.52 \)
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.02 - 0.47</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.46(X) - 43.80$

$R^2 = 0.76$
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.11 - 0.57</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.00 - 0.51</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.18(X) - 3.28$

$R^2 = 0.73$
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.15(X) + 3.70 \)

\(R^2 = 0.61 \)
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.21</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.04 - 0.53</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 156
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 3.17</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 152
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 5.09</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 257
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot and Equation](image)

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
General Office Building
(710)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 300
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.07 - 0.17</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Medical-Dental Office Building (720)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 41
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA
T = Trips Ends

Fitted Curve Equation: Not Given
R²= ***
Medical-Dental Office Building
(720)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 41
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.17 - 0.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Medical-Dental Office Building (720)

Walk Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

- Number of Studies: 1
- Avg. 1000 Sq. Ft. GFA: 41
- Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.17 - 0.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Data Plot and Equation

- Fitted Curve Equation: Not Given
- \(R^2 = *** \)

- Study Site
- Average Rate

Caution – Small Sample Size
Office Park
(750)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 39
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.03 - 0.22</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Office Park
(750)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 39
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.29 - 0.97</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

Fitted Curve Equation: Not Given

R² = ***
Research and Development Center
(760)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 120
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.48</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 129
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.05 - 0.15</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.11(X) - 0.78$
$R^2 = 0.76$
Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 120
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.20</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Free-Standing Discount Store (815)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 113
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.23 - 0.23</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Shopping Center (820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1
Avg. 1000 Sq. Ft. GLA: 11
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>6.18 - 6.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 450
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57</td>
<td>0.18 - 8.72</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(\ln(T) = 0.26 \ln(X) + 4.07 \)

\(R^2 = 0.71 \)
Shopping Center
(820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per 1000 Sq. Ft. GLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Shopping Center (820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.18 - 1.08</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GLA: 366
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.00 - 1.14</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center
(820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 20
Avg. 1000 Sq. Ft. GLA: 260
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.00 - 1.50</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.08(X) + 17.01 \)

\(R^2 = 0.62 \)
Shopping Center
(820)

Walk Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 23
Avg. 1000 Sq. Ft. GLA: 251
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.00 - 12.93</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Automobile Parts Sales (843)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 13
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.16 - 0.16</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA
T = Trips Ends

Supermarket (850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 28
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.94</td>
<td>4.87 - 5.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Caution – Small Sample Size
Supermarket
(850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 28
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Walk Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>9.21</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Supermarket (850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 61
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00 - 1.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Supermarket
(850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 61
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.79 - 0.79</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

Fitted Curve Equation: Not Given

R²= ***
Supermarket

(850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 137
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.07 - 0.07</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

R² = ***
Supermarket
(850)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 137
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.04 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Convenience Market (851)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.94</td>
<td>1.25 - 11.33</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 125.30(X) - 291.56$

$R^2 = 0.83$
Convenience Market (851)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.66</td>
<td>3.75 - 11.33</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

R² = ***
Convenience Market (851)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.67</td>
<td>0.00 - 22.82</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.56</td>
<td>1.56 - 1.56</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.25</td>
<td>0.00 - 7.59***</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Farmers Market (858)
Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.33</td>
<td>29.33 - 29.33</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Farmers Market (858)

Walk Trip Ends vs: Vendors
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Vendors: 90
Directional Distribution: Not Available

Walk Trip Generation per Vendor

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.80</td>
<td>8.80 - 8.80</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R² = ***
Farmers Market
(858)

Walk Trip Ends vs: Acres
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Acres: 2
Directional Distribution: Not Available

Walk Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.96</td>
<td>40.08 - 102.14</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Farmers Market (858)

Walk Trip Ends vs: Acres
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Acres: 2
Directional Distribution: Not Available

Walk Trip Generation per Acre

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.01</td>
<td>41.27 - 134.19</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore

(862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core

Number of Studies: 1

Avg. 1000 Sq. Ft. GFA: 108

Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.32</td>
<td>2.32 - 2.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

![Data Plot](image)

- **Study Site**
- **Fitted Curve Equation:** Not Given
- **Average Rate:**
- **R²:** ***
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 108
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.32</td>
<td>7.32 - 7.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 108
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

Study Site

Fitted Curve Equation: Not Given

Average Rate

R² = ***
Home Improvement Superstore
(862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.23 - 1.42</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = 1000 Sq. Ft. GFA

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.23 - 1.17</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore
(862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.43</td>
<td>0.42 - 2.52</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 4.00(X) - 341.00$
$R^2 = 0.54$
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 138
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>0.41 - 0.41</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

Study Site

Fitted Curve Equation: Not Given

R²= ***
Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.09</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore
(862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.01 - 0.39</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.03 - 0.52</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Sunday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 94
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.03 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

Average Rate

R² = ***
Discount Home Furnishing Superstore (869)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 280
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.18 - 0.18</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Apparel Store (876)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 45
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.31 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

X = 1000 Sq. Ft. GFA

X: Study Site
Fitted Curve Equation: Not Given

R² = ***
Apparel Store (876)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 45
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.94 - 0.94</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given
R²= ***
Furniture Store (890)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Furniture Store (890)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$X = 1000$ Sq. Ft. GFA

$T = \text{Trips Ends}$

\times Study Site

Average Rate

$R^2 = ***$
Food Cart Pod
(926)

Walk Trip Ends vs: Food Carts
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. Num. of Food Carts: 9
Directional Distribution: Not Available

Walk Trip Generation per Food Cart

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.03</td>
<td>0.53 - 10.29</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Food Cart Pod (926)

Walk Trip Ends vs: Food Carts
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 8
Avg. Num. of Food Carts: 9
Directional Distribution: Not Available

Walk Trip Generation per Food Cart

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.06</td>
<td>1.33 - 36.00</td>
<td>4.83</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

$R^2 = ***$
Quality Restaurant
(931)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.27</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
High-Turnover (Sit-Down) Restaurant (932)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.45 - 0.45</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Fast-Food Restaurant without Drive-Through Window (933)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.43 - 0.43</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

R² = ***
Fast Food Restaurant with Drive Through Window
(934)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.80</td>
<td>5.00 - 59.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

Study Site
Average Rate

R²= ***
Fast Food Restaurant with Drive Through Window (934)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.20</td>
<td>19.00 - 90.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.30</td>
<td>0.00 - 5.20</td>
<td>2.56</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Fast Food Restaurant with Drive Through Window (934)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>0.00 - 4.65</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.92</td>
<td>14.01 - 51.67</td>
<td>16.28</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[X = 1000 \text{ Sq. Ft. GFA} \]

\[R^2 = *** \]
Coffee/Donut Shop with Drive-Through Window (937)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.77</td>
<td>5.60 - 13.68</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Caution – Small Sample Size
Coffee/Donut Shop with Drive-Through Window (937)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.92</td>
<td>14.01 - 51.67</td>
<td>16.28</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.86</td>
<td>6.86 - 6.86</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Coffee/Donut Shop with Drive-Through Window (937)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.71</td>
<td>5.71 - 5.71</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***

Caution – Small Sample Size
Super Convenience Market/Gas Station (960)

Walk Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Walk Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>0.31 - 0.31</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
The table below lists the 7 land uses for which transit trip generation data are available. Data plots are presented on the following pages for a single independent variable across all available time periods and settings. Data plots for additional independent variables are available in the ITETripGen web app for some land uses.

The transit trip generation data plots and statistics for the AM and PM Peak Hour of Generator refer to the peak hour for total person trips generated by the site. This time period may or may not coincide with the peak hour of transit trips generated by the site.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>Multifamily Housing (Low-Rise)</td>
</tr>
<tr>
<td>221</td>
<td>Multifamily Housing (Mid-Rise)</td>
</tr>
<tr>
<td>222</td>
<td>Multifamily Housing (High-Rise)</td>
</tr>
<tr>
<td>231</td>
<td>Mid-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td>232</td>
<td>High-Rise Residential with 1st-Floor Commercial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td>General Office Building</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
</tr>
</tbody>
</table>
Multifamily Housing (Low-Rise) (220)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Low-Rise) (220)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.11 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Low-Rise) (220)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.07 - 0.07</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units

R² = ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 10
Avg. Num. of Occupied Dwelling Units: 112
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.00 - 0.35</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 116
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.16</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X: Study Site
--- --- --- Average Rate

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (Mid-Rise)
(221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 0.35</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 0.24</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***

X = Number of Occupied Dwelling Units

T = Trips Ends
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Dwelling Units: 206
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.09</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.09X - 5.87 \)
\(R^2 = 0.97 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Dwelling Units: 214
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.17(X) - 16.32 \) \(R^2 = 0.97 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Transit Trip Generation per Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.09(X) - 3.41 \)
\(R^2 = 0.98 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.00 - 0.15</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.15(X) - 11.11 \)
\(R^2 = 0.96 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 24
Avg. Num. of Occupied Dwelling Units: 243
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.23</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.17(X) - 14.58 \)
\(R^2 = 0.72 \)
Multifamily Housing (Mid-Rise)
(221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 21
Avg. Num. of Occupied Dwelling Units: 260
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.24</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.10(X) - 3.57 \)
\(R^2 = 0.63 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.23</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation:

Fitted Curve Equation: $T = 0.17(X) - 14.59$
$R^2 = 0.69$
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.17</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.10(X) - 4.44$

$R^2 = 0.63$
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 159
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. Num. of Dwelling Units: 147
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.00(X) - 0.23 \)
\(R^2 = 0.99 \)
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Transit Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.01 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.03(X) - 0.76$
$R^2 = 0.99$
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site

- - - - Average Rate
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site

R² = ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units
T = Trips Ends

Average Rate

R² = ***
Multifamily Housing (High-Rise) (222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\(R^2 = *** \)
Multifamily Housing (High-Rise) (222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Transit Trip Generation per Occupied Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

Study Site
Average Rate

\[X = \text{Number of Occupied Dwelling Units} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 289
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.02 - 0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.24X - 28.84 \)
\(R^2 = 0.83 \)
Multifamily Housing (High-Rise)
(222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 199
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.03 - 0.14</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\(R^2 = *** \)
Multifamily Housing (High-Rise)
(222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.02 - 0.15</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.18(X) - 17.09 \)
\(R^2 = 0.86 \)
Multifamily Housing (High-Rise)
(222)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.03 - 0.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.10(X) - 2.64$

$R^2 = 0.69$
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core

Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 223
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.02 - 0.41</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.20(X) + 1.15 \)
\(R^2 = 0.56 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 150
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.03 - 0.59</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.00 - 0.49</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.22(X) - 4.18 \)
\(R^2 = 0.53 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.03 - 0.80</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 18
Avg. Num. of Occupied Dwelling Units: 213
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.04 - 0.63</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 169
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.28 - 0.98</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.04 - 0.63</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***

Study Site

Average Rate
Mid-Rise Residential with 1st-Floor Commercial
(231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>0.03 - 1.06</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.02 - 0.92</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X: Study Site
Fitted Curve Equation: Not Given
R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 235
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43</td>
<td>0.03 - 0.79</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 1.26(X) - 194.06 \)
\(R^2 = 0.83 \)
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 308
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.92</td>
<td>0.92 - 0.92</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site

Fitted Curve Equation: Not Given

Caution – Small Sample Size

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.03 - 0.79</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site

Average Rate
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 126
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.04 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***

X = Number of Occupied Dwelling Units

T = Trips Ends

Study Site

- - - - Average Rate

0 100 200

0 2 4 6
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.04 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\(R^2 = *** \)
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.02 - 0.15</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.11 - 0.25</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[T = \text{number of trips ends} \]
\[X = \text{number of occupied dwelling units} \]
\[R^2 = *** \]
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 335
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.07 - 0.13</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.11 - 0.25</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

Average Rate

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Transit Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Transit Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.07 - 0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>0.04 - 0.96</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.06 - 0.81</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.06 - 0.96</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = **$
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.06 - 0.81</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.32</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.19(X) - 9.33$

$R^2 = 0.75$
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.00 - 0.53</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.19(X) - 8.60 \)
\(R^2 = 0.68 \)
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.00 - 0.28</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.04 - 0.37</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 156
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.23</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 152
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***
General Office Building

(710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 6

Avg. 1000 Sq. Ft. GFA: 257

Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 0.09</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.10(X) - 12.33 \)

\(R^2 = 0.77 \)
General Office Building (710)

Transit Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 300
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.02 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.08(X) - 8.90 \)
\(R^2 = 0.72 \)
Shopping Center (820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. 1000 Sq. Ft. GLA: 11
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>0.91 - 0.91</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Shopping Center
(820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 450
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.64</td>
<td>0.00 - 1.03</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.72(X) - 36.23 \) \(R^2 = 0.87 \)
Shopping Center
(820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.00 - 0.67</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.00 - 1.03</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***

Study Site

Average Rate
Shopping Center (820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GLA: 366
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.15</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Shopping Center
(820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 20
Avg. 1000 Sq. Ft. GLA: 260
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.67</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.07(X) - 0.48 \)
\(R^2 = 0.75 \)
Shopping Center (820)

Transit Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 23
Avg. 1000 Sq. Ft. GLA: 251
Directional Distribution: Not Available

Transit Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 1.95</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.07(X) - 1.30$

$R^2 = 0.70$
The table below lists the 7 land uses for which bicycle trip generation data are available. Data plots are presented on the following pages for a single independent variable across all available time periods and settings. Data plots for additional independent variables are available in the ITETripGen web app for some land uses.

The bicycle trip generation data plots and statistics for the AM and PM Peak Hour of Generator refer to the peak hour for total person trips generated by the site. This time period may or may not coincide with the peak hour of bicycle trips generated by the site.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>Multifamily Housing (Low-Rise)</td>
</tr>
<tr>
<td>221</td>
<td>Multifamily Housing (Mid-Rise)</td>
</tr>
<tr>
<td>222</td>
<td>Multifamily Housing (High-Rise)</td>
</tr>
<tr>
<td>231</td>
<td>Mid-Rise Residential with 1st-Floor Commercial</td>
</tr>
<tr>
<td>232</td>
<td>High-Rise Residential with 1st-Floor Commercial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td>General Office Building</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
</tr>
</tbody>
</table>
Multifamily Housing (Low-Rise) (220)

Bicycle Trip Ends vs: Occupied Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1

Avg. Num. of Occupied Dwelling Units: 257

Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05 - 0.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = \text{Number of Occupied Dwelling Units} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
Multifamily Housing (Low-Rise) (220)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05 - 0.05</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Low-Rise) (220)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 257
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.04 - 0.04</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Low-Rise) (220)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 351
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.00(X) - 0.31 \)
\(R^2 = 0.57 \)
Multifamily Housing (Low-Rise) (220)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 484
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = Number of Occupied Dwelling Units

T = Trips Ends

Study Site

Average Rate
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 10
Avg. Num. of Occupied Dwelling Units: 112
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 116
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

$R^2 = ***$
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 131
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

\[
X = \text{Number of Occupied Dwelling Units} \\
T = \text{Trips Ends}
\]

Fitted Curve Equation: Not Given

\[R^2 = ***\]
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 6
Avg. Num. of Dwelling Units: 206
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- **Fitted Curve Equation:** Not Given
- **R^2:***

- Study Site
- **Average Rate**

$X = \text{Number of Dwelling Units}$

$T = \text{Trips Ends}$
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 6
Avg. Num. of Dwelling Units: 214
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Dwelling Units: 324
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site

Average Rate

R²= ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. Num. of Dwelling Units: 253
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Fitted Curve
- Average Rate

Fitted Curve Equation: \(T = 0.02(X) - 0.69 \)
\(R^2 = 0.92 \)
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 24
Avg. Num. of Occupied Dwelling Units: 243
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 21
Avg. Num. of Occupied Dwelling Units: 260
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 19
Avg. Num. of Occupied Dwelling Units: 277
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 159
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. Num. of Dwelling Units: 147
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Dwelling Units: 184
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Multifamily Housing (Mid-Rise)
(221)

Bicycle Trip Ends vs: Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. Num. of Dwelling Units: 269
Directional Distribution: Not Available

Bicycle Trip Generation per Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***

Study Site
Average Rate

Fitted Curve Equation: Not Given
R² = ***
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 312
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.00</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (Mid-Rise) (221)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 336
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***

Caution – Small Sample Size
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 237
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: Not Given

R² = ***

Study Site

Fitted Curve Equation: Not Given

Average Rate

X = Number of Occupied Dwelling Units

T = Trips Ends

Data Plot and Equation
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 250
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units

On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core

Number of Studies: 2

Avg. Num. of Occupied Dwelling Units: 250

Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 6
Avg. Num. of Occupied Dwelling Units: 289
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Bicycle Trip Generation per Occupied Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 199
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

\[T = \text{Trips Ends} \]
\[X = \text{Number of Occupied Dwelling Units} \]

\[\text{Fitted Curve Equation: Not Given} \]
\[R^2 = *** \]
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Multifamily Housing (High-Rise) (222)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. Num. of Occupied Dwelling Units: 262
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Occupied Dwelling Units

Fitted Curve Equation: Not Given
R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 9
Avg. Num. of Occupied Dwelling Units: 223
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site
Average Rate

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: Center City Core
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 150
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.02 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Ln(T) = 0.97 Ln(X) - 3.23
R²= 0.86
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Occupied Dwelling Units

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 15
Avg. Num. of Occupied Dwelling Units: 205
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.01 - 0.27</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Occupied Dwelling Units
T = Trips Ends

Study Site
Fitted Curve Equation: Not Given

Average Rate

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 18
Avg. Num. of Occupied Dwelling Units: 213
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.11</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 169
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.02 - 0.15</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

$X = \text{Number of Occupied Dwelling Units}$

$T = \text{Trips Ends}$

Study Site

Fitted Curve Equation: Not Given

- - - Average Rate

$R^2 = ***$
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban

Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Occupied Dwelling Units
T = Trips Ends

Fitted Curve Equation: Not Given
R²= ***
Bicycle Trip Generation Data Plots

Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 27
Avg. Num. of Occupied Dwelling Units: 202
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.28</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = Number of Occupied Dwelling Units
T = Trips Ends

Study Site

Fitted Curve Equation: Not Given

R²= ***
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Occupied Dwelling Units: 235
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[X = Number \ of \ Occupied \ Dwelling \ Units \]

\[T = Trips \ Ends \]

\[R^2 = *** \]
Mid-Rise Residential with 1st-Floor Commercial (231)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. Num. of Occupied Dwelling Units: 217
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Bicycle Trip Generation per Occupied Dwelling Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 1
Avg. Num. of Occupied Dwelling Units: 126
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

\[T = \text{Trips Ends} \]
\[X = \text{Number of Occupied Dwelling Units} \]

\(X = \text{Number of Occupied Dwelling Units} \)

\(T = \text{Trips Ends} \)

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

Study Site

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday, PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 249
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

$R^2 = ***$
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 2
Avg. Num. of Occupied Dwelling Units: 335
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.02 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[X = \text{Number of Occupied Dwelling Units} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***
High-Rise Residential with 1st-Floor Commercial (232)

Bicycle Trip Ends vs: Occupied Dwelling Units
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. Num. of Occupied Dwelling Units: 302
Directional Distribution: Not Available

Bicycle Trip Generation per Occupied Dwelling Unit

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

\[X = Number\ of\ Occupied\ Dwelling\ Units \]

\[T = Trips\ Ends \]

Study Site

Fitted Curve Equation: Not Given

Average Rate

\[R^2 = ** * \]
General Office Building
(710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 0.11</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Center City Core
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 230
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Bicycle Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Center City Core
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 244
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R²= ***
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.17</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 196
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.09</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Bicycle Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 192
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.09</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

$R^2 = ***$
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 156
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building (710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 152
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.02</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.01(X) - 0.23 \)
\(R^2 = 0.58 \)
General Office Building
(710)

Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 257
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.01(X) - 1.65 \)
\(R^2 = 0.59 \)
Bicycle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 300
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.01(X) - 0.50 \)

\(R^2 = 0.54 \)
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 1
Avg. 1000 Sq. Ft. GLA: 11
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.27 - 0.27</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 450
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.45</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot](image)

Fitted Curve Equation: Not Given

Average Rate

R² = ***
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: Dense Multi-Use Urban
Number of Studies: 3
Avg. 1000 Sq. Ft. GLA: 727
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.08</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GLA: 215
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.02(X) - 0.68 \)

\(R^2 = 0.89 \)
Shopping Center (820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 20
Avg. 1000 Sq. Ft. GLA: 260
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.01(X) + 0.27 \)
\(R^2 = 0.81 \)
Shopping Center
(820)

Bicycle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 22
Avg. 1000 Sq. Ft. GLA: 255
Directional Distribution: Not Available

Bicycle Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.02(X) - 0.32 \)
\(R^2 = 0.72 \)
The table below lists the 50 land uses for which truck trip generation data are available. Data plots are presented on the following pages for a single independent variable across all available time periods and settings. Data plots for additional independent variables are available in the ITETripGen web app for some land uses.

A land use denoted in the table with a "***" symbol indicates that trip generation data plots are available only in the ITETripGen web app. They are not reproduced in the hard-copy or electronic versions of the ITE Trip Generation Manual, 10th Edition Supplement.

The truck trip generation data plots and statistics for the AM and PM Peak Hour of Generator refer to the peak hour for total vehicle trips generated by the site. This time period may or may not coincide with the peak hour of truck trips generated by the site. Refer to Appendix D for truck trip time of day distributions by land use.

<table>
<thead>
<tr>
<th>CODE</th>
<th>LAND USE</th>
<th>CODE</th>
<th>LAND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial (Land Uses 100–199)</td>
<td></td>
<td>Residential (Land Uses 200–299)</td>
</tr>
<tr>
<td>110</td>
<td>General Light Industrial</td>
<td>254</td>
<td>Assisted Living</td>
</tr>
<tr>
<td>130</td>
<td>Industrial Park</td>
<td></td>
<td>Lodging (Land Uses 300–399)</td>
</tr>
<tr>
<td>140</td>
<td>Manufacturing</td>
<td>312</td>
<td>Business Hotel</td>
</tr>
<tr>
<td>150</td>
<td>Warehousing</td>
<td>320</td>
<td>Motel</td>
</tr>
<tr>
<td>151</td>
<td>Mini-Warehouse</td>
<td></td>
<td>Institutional (Land Uses 500–599)</td>
</tr>
<tr>
<td>154</td>
<td>High-Cube Transload and High-Cube Fulfillment Center Warehouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>High-Cube Transload and High-Cube Fulfillment Center Warehouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>High-Cube Parcel Hub Warehouse</td>
<td></td>
<td>Medical (Land Uses 600–699)</td>
</tr>
<tr>
<td>157</td>
<td>High-Cube Cold Storage Warehouse</td>
<td>610</td>
<td>Hospital</td>
</tr>
<tr>
<td>170</td>
<td>Utility</td>
<td>620</td>
<td>Nursing Home</td>
</tr>
<tr>
<td>180</td>
<td>Specialty Trade Contractor</td>
<td>630</td>
<td>Clinic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640</td>
<td>Animal Hospital/Veterinary Clinic</td>
</tr>
<tr>
<td>CODE</td>
<td>LAND USE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>General Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>712</td>
<td>Small Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>Medical-Dental Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>730</td>
<td>Government Office Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>Building Materials and Lumber Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>Free-Standing Discount Superstore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>814</td>
<td>Variety Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>816</td>
<td>Hardware/Paint Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Shopping Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>Automobile Sales (New)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>841</td>
<td>Automobile Sales (Used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>842</td>
<td>Recreational Vehicle Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>843</td>
<td>Automobile Parts Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>848</td>
<td>Tire Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>Supermarket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>853</td>
<td>Convenience Market with Gasoline Pumps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>862</td>
<td>Home Improvement Superstore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>881</td>
<td>Pharmacy/Drugstore with Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>890</td>
<td>Furniture Store</td>
<td></td>
<td></td>
</tr>
<tr>
<td>912</td>
<td>Drive-in Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>931</td>
<td>Quality Restaurant*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>High-Turnover (Sit-Down) Restaurant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>Fast-Food Restaurant without Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>Fast-Food Restaurant with Drive-Through Window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>Fast-Food Restaurant with Drive-Through Window and No Indoor Seating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>941</td>
<td>Quick Lubrication Vehicle Shop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>943</td>
<td>Automobile Parts and Service Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>945</td>
<td>Gasoline/Service Station with Convenience Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>Truck Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>Super Convenience Market/Gas Station</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Light Industrial (110)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 28
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.00 - 3.51</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.18(X) + 1.94 \)
\(R^2 = 0.62 \)
General Light Industrial

(110)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 27
Avg. 1000 Sq. Ft. GFA: 28
Directional Distribution: 63% entering, 37% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 1.59</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Light Industrial (110)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 27
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.15</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Light Industrial
(110)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 28
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: 45% entering, 55% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 3.51</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = **
General Light Industrial
(110)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 28
Avg. 1000 Sq. Ft. GFA: 27
Directional Distribution: 53% entering, 47% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.67</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Industrial Park
(130)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 260
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.57</td>
<td>0.35 - 0.83</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Industrial Park
(130)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 260
Directional Distribution: 45% entering, 55% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.03 - 0.06</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[\text{Average Rate} = \text{Study Site} \]

\[\text{Fitted Curve Equation: Not Given} \]

\[R^2 = *** \]
Industrial Park (130)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 260
Directional Distribution: 38% entering, 62% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.01 - 0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[T = 1000 \text{ Sq. Ft. GFA} \]

\[X = 1000 \text{ Sq. Ft. GFA} \]

\[R^2 = *** \]
Industrial Park
(130)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 260
Directional Distribution: 67% entering, 33% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.02 - 0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Industrial Park

(130)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 260
Directional Distribution: 38% entering, 62% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Manufacturing (140)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 101
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.00 - 5.50</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
Manufacturing (140)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 101
Directional Distribution: 55% entering, 45% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Manufacturing
(140)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 103
Directional Distribution: 41% entering, 59% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Manufacturing
(140)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 101
Directional Distribution: 43% entering, 57% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.12</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$

Study Site
Average Rate
Manufacturing
(140)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 101
Directional Distribution: 43% entering, 57% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.20</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Warehousing
(150)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 115
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.60</td>
<td>0.00 - 6.66</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.54(X) + 7.47$

$R^2 = 0.61$
Warehousing
(150)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 309
Directional Distribution: 52% entering, 48% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.69</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Warehousing
(150)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 23
Avg. 1000 Sq. Ft. GFA: 308
Directional Distribution: 52% entering, 48% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.42</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Warehousing
(150)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 115
Directional Distribution: 35% entering, 65% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.60</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.06(X) + 0.99 \)

\(R^2 = 0.57 \)
Warehousing (150)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 115
Directional Distribution: 53% entering, 47% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.05(X) + 0.82 \)
\(R^2 = 0.62 \)
Mini-Warehouse
(151)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 50
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.26</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Mini-Warehouse (151)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 6

Avg. 1000 Sq. Ft. GFA: 50

Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Fitted Curve Equation: Not Given
- \(R^2 = *** \)

- \(X = 1000 \text{ Sq. Ft. GFA} \)
- \(T = \text{Trips Ends} \)
Mini-Warehouse
(151)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 50
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Transload and Short-Term Storage Warehouse

(154)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 57
Avg. 1000 Sq. Ft. GFA: 892
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.02 - 0.74</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Transload and Short-Term Storage Warehouse (154)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 90
Avg. 1000 Sq. Ft. GFA: 812
Directional Distribution: 49% entering, 51% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.06</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = 1000 Sq. Ft. GFA
T = Trips Ends

Fitted Curve Equation: Not Given

R² = ***
High-Cube Transload and Short-Term Storage Warehouse

(154)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 91
Avg. 1000 Sq. Ft. GFA: 807
Directional Distribution: 47% entering, 53% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Transload and Short-Term Storage Warehouse (154)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 950
Directional Distribution: 56% entering, 44% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Fitted Curve Equation: Not Given
- Average Rate
- $R^2 = ***$
High-Cube Transload and Short-Term Storage Warehouse (154)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 974
Directional Distribution: 55% entering, 45% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.03(X) - 5.07 \)
\(R^2 = 0.58 \)
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 10
Avg. 1000 Sq. Ft. GFA: 886
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.07 - 0.89</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
High-Cube Fulfillment Center Warehouse - Non-Sort (155)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 782
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.12</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Study Site
- Average Rate

Fitted Curve Equation: Not Given

R² = ***
High-Cube Fulfillment Center Warehouse - Non-Sort
(155)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 782
Directional Distribution: 46% entering, 54% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

- Fitted Curve Equation: Not Given
- $R^2 = ***$
- Study Site
- Average Rate

$x = 1000$ Sq. Ft. GFA

$T = $ Trips Ends

$0 \leq X \leq 2000$

$0 \leq T \leq 30$
High-Cube Fulfillment Center Warehouse - Sort (155)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 1360
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.12 - 0.24</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
High-Cube Fulfillment Center Warehouse - Sort (155)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1277
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$
High-Cube Fulfillment Center Warehouse - Sort (155)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 1277
Directional Distribution: 46% entering, 54% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.05</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
High-Cube Parcel Hub Warehouse (156)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 615
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.05 - 3.61</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Cube Parcel Hub Warehouse
(156)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 414
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.04 - 0.14</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R^2 = ***
High-Cube Parcel Hub Warehouse
(156)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 414
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.01 - 0.12</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

Study Site

Average Rate

R²= ***
High-Cube Cold Storage Warehouse (157)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 638
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.45 - 0.97</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 1.07(X) - 203.18$

$R^2 = 0.85$
High-Cube Cold Storage Warehouse
(157)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 569
Directional Distribution: 33% entering, 67% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.02 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.02(X) + 4.35$
$R^2 = 0.59$
High-Cube Cold Storage Warehouse

(157)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 569
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.03(X) - 3.56 \)

\(R^2 = 0.87 \)
Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.00 - 1.80</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Utility
(170)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 13
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Utility (170)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.60</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

X = Trips Ends

R² = ***
Utility (170)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.75</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Specialty Trade Contractor
(180)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>0.00 - 2.50</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Specialty Trade Contractor (180)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given
R² = ***
Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 18
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Specialty Trade Contractor
(180)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.00 - 0.82</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Specialty Trade Contractor (180)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.00 - 1.37</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site
Fitted Curve Equation: Not Given

R² = ***
Assisted Living
(254)

Truck Trip Ends vs: Occupied Beds
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Beds: 69
Directional Distribution: 89% entering, 11% exiting

Truck Trip Generation per Occupied Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.10</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size
Assisted Living (254)

Truck Trip Ends vs: Occupied Beds
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Occupied Beds: 69
Directional Distribution: 33% entering, 67% exiting

Truck Trip Generation per Occupied Bed

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]

Study Site

Average Rate
Business Hotel (312)

Truck Trip Ends vs: Rooms
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Rooms: 83
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.09 - 0.26</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Truck Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Rooms: 83
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Truck Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Rooms: 83
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Truck Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Rooms: 83
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Business Hotel
(312)

Truck Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. Num. of Rooms: 83
Directional Distribution: 67% entering, 33% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.01 - 0.03</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Motel
(320)

Truck Trip Ends vs: Rooms
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Rooms: 55
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.00 - 0.15</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$
Motel (320)

Truck Trip Ends vs: Rooms
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Rooms: 55
Directional Distribution: Not Available

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.05(X) - 2.20 \)
\(R^2 = 0.94 \)
Motel (320)

Truck Trip Ends vs: Rooms

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. Num. of Rooms: 55
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.10</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given
\(R^2 = *** \)

X: Study Site
- - - - Average Rate
Motel (320)

Truck Trip Ends vs: Rooms
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Rooms: 55
Directional Distribution: 75% entering, 25% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.05</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Motel
(320)

Truck Trip Ends vs: Rooms
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. Num. of Rooms: 55
Directional Distribution: 43% entering, 57% exiting

Truck Trip Generation per Room

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Day Care Center
(565)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56</td>
<td>0.00 - 1.88</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Truck Trip Generation Data Plots

Day Care Center
(565)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 0.82</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Day Care Center
(565)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.63</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Day Care Center (565)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.82</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$X = 1000$ Sq. Ft. GFA

$T = $ Trips Ends

Study Site

Average Rate

$R^2 = ***$
Museum
(580)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 176
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Museum (580)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 176
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.01 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

\[R^2 = *** \]
Museum (580)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 176
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Study Site
Fitted Curve Equation: Not Given

R² = ***
Hospital (610)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 166
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.06 - 0.23</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Hospital (610)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 453
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.03(X) - 5.11 \)
\(R^2 = 0.97 \)
Hospital (610)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 453
Directional Distribution: 75% entering, 25% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.02(X) - 1.54$

$R^2 = 0.92$
Hospital
(610)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 166
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Hospital (610)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 453
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.02(X) - 0.75 \)
\(R^2 = 0.98 \)
Nursing Home (620)

Trip Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.02 - 0.50</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\[R^2 = *** \]
Nursing Home
(620)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peek Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Nursing Home
(620)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: 60% entering, 40% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.11</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Nursing Home (620)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 51
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Clinic (630)

Trip Generation Manual, 10th Edition Supplement

Clinic (630)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 25
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.21 - 0.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Clinic (630)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 25
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.11</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Animal Hospital/Veterinary Clinic (640)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16</td>
<td>0.53 - 2.31</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Animal Hospital/Veterinary Clinic (640)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 1.16</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Animal Hospital/Veterinary Clinic (640)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39</td>
<td>0.00 - 1.25</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$
Animal Hospital/Veterinary Clinic (640)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.00 - 1.16</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.55(X) - 0.23$
$R^2 = 0.60$
General Office Building
(710)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 44
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.00 - 0.76</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.05(X) + 2.85 \)

\(R^2 = 0.65 \)
General Office Building (710)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 12
Avg. 1000 Sq. Ft. GFA: 53
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.05</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.01(X) - 0.08 \)

\(R^2 = 0.58 \)
General Office Building
(710)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 50
Directional Distribution: 33% entering, 67% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
General Office Building (710)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 49
Directional Distribution: 70% entering, 30% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.38</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
General Office Building
(710)

Trip Generation Manual, 10th Edition Supplement

Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 47
Directional Distribution: 43% entering, 57% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.22</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Small Office Building
(712)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.00 - 1.22</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Small Office Building
(712)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$
Small Office Building
(712)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.00 - 1.22</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Small Office Building (712)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 17
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 0.88</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Medical-Dental Office Building
(720)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.00 - 4.64</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Medical-Dental Office Building (720)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.36</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$
Medical-Dental Office Building (720)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 56% entering, 44% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.00 - 1.87</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Medical-Dental Office Building (720)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 16
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.33</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Government Office Building (730)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0.00 - 1.33</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Study Site

Average Rate
Government Office Building
(730)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 67% entering, 33% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.33</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Government Office Building (730)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.22</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Government Office Building
(730)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 0.33</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 40% entering, 60% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.48</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Building Materials and Lumber Store (812)

Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28</td>
<td>0.13 - 1.84</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Building Materials and Lumber Store (812)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 21
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.02(X) - 0.25 \)

\(R^2 = 0.53 \)
Building Materials and Lumber Store (812)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.31</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 33% entering, 67% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.46</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Free-Standing Discount Superstore
(813)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 172
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Variety Store (814)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.00 - 1.78</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Variety Store
(814)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.00 - 0.51</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Variety Store
(814)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 67% entering, 33% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.22</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Variety Store
(814)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 45% entering, 55% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.00 - 0.30</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Variety Store (814)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 9
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 40% entering, 60% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.22</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Hardware/Paint Store (816)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 15
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.00 - 1.02</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$
Shopping Center (820)

Truck Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 513
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.05 - 0.25</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Shopping Center (820)

Truck Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GLA: 510
Directional Distribution: 53% entering, 47% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Shopping Center (820)

Truck Trip Ends vs: 1000 Sq. Ft. GLA
On: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 513
Directional Distribution: 78% entering, 22% exiting

Truck Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00 - 0.01</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Shopping Center
(820)

Shopping Center
(820)

Trip Generation Manual, 10th Edition Supplement

Trip Generation Manual, 10th Edition Supplement

Setting/Location: General Urban/Suburban

Number of Studies: 5

Avg. 1000 Sq. Ft. GLA: 513

Directional Distribution: 54% entering, 46% exiting

Truck Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: Not Given

R² = ***

Data Plot and Equation
Shopping Center (820)

Truck Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GLA: 513
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GLA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$
Automobile Sales (New)

(840)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0.00 - 0.55</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.66(X) - 7.60$

$R^2 = 0.52$
Automobile Sales (New) (840)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.00 - 0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Automobile Sales (New) (840)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: 44% entering, 56% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 0.21</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Automobile Sales (New) (840)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: 46% entering, 54% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 0.18</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Automobile Sales (New) (840)

Trip Generation Manual, 10th Edition Supplement

Automobile Sales (New) (840)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 29
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.21</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = 1000 Sq. Ft. GFA

Study Site

Fitted Curve Equation: Not Given

R² = ***
Automobile Sales (Used) (841)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18</td>
<td>0.00 - 4.64</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: Not Given

R² = ***
Automobile Sales (Used) (841)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 56% entering, 44% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.00 - 1.90</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Automobile Sales (Used) (841)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 44% entering, 56% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.00 - 3.10</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Data Plot and Equation

X = 1000 Sq. Ft. GFA

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Recreational Vehicle Sales (842)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 24
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.62</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Recreational Vehicle Sales (842)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 24
Directional Distribution: 60% entering, 40% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.28</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Recreational Vehicle Sales
(842)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 24
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 0.31</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Automobile Parts Sales (843)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.00 - 1.48</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Automobile Parts Sales (843)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.30</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Automobile Parts Sales
(843)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 6
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.00 - 0.59</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Tire Store
(848)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.17</td>
<td>0.81 - 5.19</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 2.03(X) + 0.75$

$R^2 = 0.77$
Tire Store (848)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Tire Store (848)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 46% entering, 54% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49</td>
<td>0.00 - 2.59</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Tire Store (848)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 56% entering, 44% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.00 - 2.04</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***

Study Site

Average Rate
Supermarket (850)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.85</td>
<td>2.85 - 2.85</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Supermarket
(850)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 36
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.10 - 0.53</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given

Caution – Small Sample Size
Supermarket (850)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 40% entering, 60% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0.45 - 0.45</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>0.69 - 12.18</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$

Study Site

Average Rate
Convenience Market with Gasoline Pumps (853)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 49% entering, 51% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>0.00 - 3.23</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\(R^2 = *** \)
Convenience Market with Gasoline Pumps (853)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 56% entering, 44% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.00 - 0.96</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 44% entering, 56% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67</td>
<td>0.00 - 3.23</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Convenience Market with Gasoline Pumps (853)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 25
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 58% entering, 42% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.00 - 1.52</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: Dense Multi-Use Urban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: 49% entering, 51% exiting

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.05 - 0.18</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***
Home Improvement Superstore (862)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: Dense Multi-Use Urban

Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 133
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.02 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.10(X) - 7.56$
$R^2 = 0.71$
Home Improvement Superstore (862)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 113
Directional Distribution: 60% entering, 40% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.04 - 0.10</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: $T = 0.09(X) - 1.58$

$R^2 = 0.86$
Home Improvement Superstore (862)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 134
Directional Distribution: 56% entering, 44% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.02 - 0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site

R² = ***
Pharmacy/Drugstore with Drive-Through Window (881)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>0.67 - 11.26</td>
<td>2.15</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$

Study Site

Average Rate
Pharmacy/Drugstore with Drive-Through Window (881)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00 - 0.27</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Pharmacy/Drugstore with Drive-Through Window (881)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00 - 0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Pharmacy/Drugstore with Drive-Through Window (881)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>0.00 - 2.81</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

$R^2 = ***$
Pharmacy/Drugstore with Drive-Through Window (881)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 33% entering, 67% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 1.41</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Furniture Store
(890)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.66</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Study Site

Fitted Curve Equation: Not Given

R² = ***
Furniture Store
(890)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 14
Directional Distribution: 67% entering, 33% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.12</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: \(T = 0.07(X) - 0.38 \)
\(R^2 = 0.71 \)
Furniture Store (890)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 43% entering, 57% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.41</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Furniture Store
(890)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 23
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.00 - 0.59</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Drive-In Bank
(912)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.54</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Drive-In Bank
(912)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 20
Avg. 1000 Sq. Ft. GFA: 8
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.00 - 0.38</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***
Drive-In Bank (912)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 15
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.26</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R^2 = ***
Drive-In Bank
(912)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0.02</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Drive-In Bank (912)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 14
Avg. 1000 Sq. Ft. GFA: 9
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[X = 1000 \text{ Sq. Ft. GFA} \]

\[T = \text{Trips Ends} \]

\[R^2 = *** \]
High-Turnover (Sit-Down) Restaurant (932)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 31
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
<td>0.00 - 5.12</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Turnover (Sit-Down) Restaurant (932)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 11
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 1.33</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
High-Turnover (Sit-Down) Restaurant
(932)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 31
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.00 - 0.39</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\(R^2 = *** \)
High-Turnover (Sit-Down) Restaurant (932)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 30
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 47% entering, 53% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.00 - 2.05</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***

Study Site

Average Rate

High-Turnover (Sit-Down) Restaurant (932)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 32
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.00 - 2.05</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Fast-Food Restaurant without Drive-Through Window (933)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 4
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57</td>
<td>0.00 - 3.27</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Fast-Food Restaurant without Drive-Through Window (933)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.00 - 0.46</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Fast-Food Restaurant without Drive-Through Window (933)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.00 - 0.91</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Fast Food Restaurant with Drive Through Window (934)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 26
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.89</td>
<td>0.00 - 9.70</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 13
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 55% entering, 45% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29</td>
<td>0.00 - 2.22</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
 Peak Hour of Adjacent Street Traffic,
 One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 26
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.00 - 1.11</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

X = 1000 Sq. Ft. GFA

Average Rate

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 26
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 62% entering, 38% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.00 - 1.35</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Fast Food Restaurant with Drive Through Window (934)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 26
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>0.00 - 2.02</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (935)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95</td>
<td>0.00 - 8.93</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (935)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>0.00 - 8.93</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
\(R^2 = *** \)
Quick Lubrication Vehicle Shop (941)

Truck Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45</td>
<td>1.45 - 1.45</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

- **X** = Trips Ends
- **X** = 1000 Sq. Ft. GFA
- **Fitted Curve Equation**: Not Given
- **R²** = ***

Study Site

Truck Trip Generation Data Plots 755
Quick Lubrication Vehicle Shop
(941)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 1
Avg. 1000 Sq. Ft. GFA: 1
Directional Distribution: Not Available

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0.72</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

Average Rate

Study Site

\[X = 1000 \text{ Sq. Ft. GFA} \]
Automobile Parts and Service Center (943)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 29
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.79</td>
<td>0.00 - 7.18</td>
<td>1.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***

Study Site

Average Rate
Automobile Parts and Service Center (943)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban
Number of Studies: 28
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 67% entering, 33% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 1.44</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Automobile Parts and Service Center (943)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 29
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 44% entering, 56% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00 - 1.07</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R²= ***

Study Site
Automobile Parts and Service Center (943)

Trip Generation Manual, 10th Edition Supplement

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 29
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 55% entering, 45% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>0.00 - 1.61</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R²= ***
Automobile Parts and Service Center
(943)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 29
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 47% entering, 53% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>0.00 - 2.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
R² = ***
Gasoline/Service Station With Convenience Market (945)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.38</td>
<td>3.52 - 5.17</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Gasoline/Service Station With Convenience Market (945)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 2
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84</td>
<td>0.80 - 0.88</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Study Site

Average Rate

R²= ***
Truck Stop
(950)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: 50% entering, 50% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.49</td>
<td>106.92 - 174.10</td>
<td>33.07</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

R² = ***
Truck Stop (950)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.86</td>
<td>5.92 - 12.40</td>
<td>3.51</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Truck Stop
(950)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.03</td>
<td>7.33 - 13.70</td>
<td>3.09</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

\[R^2 = *** \]
Truck Stop (950)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.40</td>
<td>7.42 - 12.40</td>
<td>2.67</td>
</tr>
</tbody>
</table>

Data Plot and Equation

![Data Plot and Equation](image)

Fitted Curve Equation: Not Given

R² = ***
Truck Stop
(950)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 12
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.14</td>
<td>9.17 - 15.40</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given
$R^2 = ***$
Super Convenience Market/Gas Station (960)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50% entering, 50% exiting

<table>
<thead>
<tr>
<th>Truck Trip Generation per 1000 Sq. Ft. GFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Rate</td>
</tr>
<tr>
<td>6.66</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Fitted Curve Equation: Not Given

Caution – Small Sample Size
Super Convenience Market/Gas Station (960)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 60% entering, 40% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>0.57 - 0.97</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Super Convenience Market/Gas Station
(960)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R²= ***
Super Convenience Market/Gas Station
(960)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
AM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 40% entering, 60% exiting

Truck Trip Generation per 1000 Sq. Ft. GFA

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.76</td>
<td>0.57 - 0.97</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Plot and Equation

Caution – Small Sample Size

Fitted Curve Equation: Not Given

R² = ***
Super Convenience Market/Gas Station
(960)

Truck Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
PM Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 2
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: Not Available

Data Plot and Equation

<table>
<thead>
<tr>
<th>Average Rate</th>
<th>Range of Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.00 - 0.32</td>
<td>***</td>
</tr>
</tbody>
</table>

Fitted Curve Equation: Not Given

R² = ***

Caution – Small Sample Size
A Appendix: Sources

The following are the sources for the trip generation data presented in Chapter 5. The data presented in Chapters 6 through 10 are from the sources documented in Trip Generation Manual, 10th Edition.

752. Texas Transportation Institute, College Station, TX, 2008–2009.
782. BL Companies, Meriden, CT, 2016.
792. South Coast Air Quality Management District, Diamond Bar, CA, 2015.
853. Portland State University, Portland, OR and California Department of Transportation, Sacramento, CA, 2019.
Appendix: Walk-Transit-Bicycle Trips as Percent of Total Person Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, Setting, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 Multifamily Housing (Low-Rise)—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>40%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>40%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>42%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>220 Multifamily Housing (Low-Rise)—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>3%</td>
<td>0%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>4%</td>
<td>1%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>221 Multifamily Housing (Mid-Rise)—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>10</td>
<td>41%</td>
<td>15%</td>
<td>95%</td>
<td>26%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>9</td>
<td>61%</td>
<td>23%</td>
<td>96%</td>
<td>26%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>43%</td>
<td>20%</td>
<td>95%</td>
<td>27%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>53%</td>
<td>22%</td>
<td>94%</td>
<td>26%</td>
</tr>
</tbody>
</table>
Walk, Transit, or Bicycle Trips as Percentage of Total Person Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, Setting, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>221 Multifamily Housing (Mid-Rise)—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>29</td>
<td>37%</td>
<td>6%</td>
<td>68%</td>
<td>15%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>26</td>
<td>42%</td>
<td>21%</td>
<td>65%</td>
<td>14%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>24</td>
<td>39%</td>
<td>13%</td>
<td>73%</td>
<td>15%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>24</td>
<td>39%</td>
<td>15%</td>
<td>73%</td>
<td>14%</td>
</tr>
<tr>
<td>221 Multifamily Housing (Mid-Rise)—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>6</td>
<td>7%</td>
<td>1%</td>
<td>17%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>8</td>
<td>8%</td>
<td>0%</td>
<td>31%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>16%</td>
<td>0%</td>
<td>34%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>19%</td>
<td>5%</td>
<td>37%</td>
<td>14%</td>
</tr>
<tr>
<td>222 Multifamily Housing (High-Rise)—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>53%</td>
<td>22%</td>
<td>69%</td>
<td>25%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>49%</td>
<td>26%</td>
<td>79%</td>
<td>31%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>57%</td>
<td>32%</td>
<td>69%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>47%</td>
<td>26%</td>
<td>61%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>222 Multifamily Housing (High-Rise)—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>6</td>
<td>56%</td>
<td>28%</td>
<td>87%</td>
<td>19%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>54%</td>
<td>23%</td>
<td>81%</td>
<td>29%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>50%</td>
<td>27%</td>
<td>62%</td>
<td>13%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>56%</td>
<td>20%</td>
<td>73%</td>
<td>20%</td>
</tr>
<tr>
<td>231 Mid-Rise Residential with 1st-Floor Commercial—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>9</td>
<td>69%</td>
<td>49%</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>73%</td>
<td>67%</td>
<td>80%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>15</td>
<td>69%</td>
<td>49%</td>
<td>80%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>15</td>
<td>77%</td>
<td>65%</td>
<td>91%</td>
<td>7%</td>
</tr>
<tr>
<td>231 Mid-Rise Residential with 1st-Floor Commercial—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>24</td>
<td>65%</td>
<td>29%</td>
<td>94%</td>
<td>13%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>7</td>
<td>62%</td>
<td>17%</td>
<td>87%</td>
<td>25%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>27</td>
<td>67%</td>
<td>47%</td>
<td>94%</td>
<td>11%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>33</td>
<td>69%</td>
<td>17%</td>
<td>98%</td>
<td>18%</td>
</tr>
</tbody>
</table>
Walk, Transit, or Bicycle Trips as Percentage of Total Person Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, Setting, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>231 Mid-Rise Residential with 1st-Floor Commercial—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>58%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>67%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>58%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>67%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>232 High-Rise Residential with 1st-Floor Commercial—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>71%</td>
<td>64%</td>
<td>90%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>81%</td>
<td>67%</td>
<td>83%</td>
<td>N.A.</td>
</tr>
<tr>
<td>232 High-Rise Residential with 1st-Floor Commercial—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>65%</td>
<td>55%</td>
<td>67%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>64%</td>
<td>63%</td>
<td>64%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>3</td>
<td>65%</td>
<td>55%</td>
<td>67%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>3</td>
<td>69%</td>
<td>63%</td>
<td>79%</td>
<td>9%</td>
</tr>
<tr>
<td>252 Senior Adult Housing—Attached—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>4%</td>
<td>0%</td>
<td>6%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>253 Congregate Care Facility—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>7%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>3%</td>
<td>0%</td>
<td>7%</td>
<td>N.A.</td>
</tr>
<tr>
<td>310 Hotel—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>49%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>60%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>310 Hotel—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>41%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>41%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>54%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>312 Business Hotel—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>60%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>60%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>59%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Walk, Transit, or Bicycle Trips as Percentage of Total Person Trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312 Business Hotel—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>2%</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>2%</td>
<td>0%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>430 Golf Course—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>4%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>437 Bowling Alley—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>1%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>470 Bingo Hall—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>3%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>1%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>491 Racquet/Tennis Club—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>492 Health/Fitness Club—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>11%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>17%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>495 Recreational Community Center—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>2%</td>
<td>1%</td>
<td>3%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>4%</td>
<td>1%</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>4%</td>
<td>1%</td>
<td>7%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>4%</td>
<td>1%</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>560 Church—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday, Peak Hour of Generator</td>
<td>1</td>
<td>7%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Sunday, Peak Hour of Generator</td>
<td>2</td>
<td>3%</td>
<td>2%</td>
<td>4%</td>
<td>N.A.</td>
</tr>
<tr>
<td>620 Nursing Home—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>3</td>
<td>9%</td>
<td>7%</td>
<td>12%</td>
<td>3%</td>
</tr>
</tbody>
</table>
Walk, Transit, or Bicycle Trips as Percentage of Total Person Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, Setting, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>630 Clinic—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>1%</td>
<td>0%</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>14%</td>
<td>0%</td>
<td>38%</td>
<td>18%</td>
</tr>
<tr>
<td>710 General Office Building—Center City Core Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>8</td>
<td>54%</td>
<td>5%</td>
<td>79%</td>
<td>23%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>8</td>
<td>57%</td>
<td>23%</td>
<td>81%</td>
<td>22%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>7</td>
<td>56%</td>
<td>31%</td>
<td>79%</td>
<td>17%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>7</td>
<td>58%</td>
<td>32%</td>
<td>81%</td>
<td>20%</td>
</tr>
<tr>
<td>710 General Office Building—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>18</td>
<td>26%</td>
<td>0%</td>
<td>49%</td>
<td>14%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>19</td>
<td>25%</td>
<td>0%</td>
<td>47%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>11</td>
<td>22%</td>
<td>0%</td>
<td>49%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>13</td>
<td>26%</td>
<td>0%</td>
<td>44%</td>
<td>11%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>710 General Office Building—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>17</td>
<td>10%</td>
<td>0%</td>
<td>17%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>14</td>
<td>10%</td>
<td>1%</td>
<td>15%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>7</td>
<td>11%</td>
<td>7%</td>
<td>15%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>16</td>
<td>11%</td>
<td>3%</td>
<td>37%</td>
<td>8%</td>
</tr>
<tr>
<td>720 Medical-Dental Office Building—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>3%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>4%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>4%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>750 Office Park—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>8%</td>
<td>2%</td>
<td>10%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>N.A.</td>
</tr>
<tr>
<td>760 Research and Development Center—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>10</td>
<td>10%</td>
<td>0%</td>
<td>30%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>16%</td>
<td>7%</td>
<td>30%</td>
<td>10%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>10</td>
<td>13%</td>
<td>0%</td>
<td>30%</td>
<td>11%</td>
</tr>
<tr>
<td>820 Shopping Center—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>32%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>37%</td>
<td>33%</td>
<td>39%</td>
<td>N.A.</td>
</tr>
<tr>
<td>820 Shopping Center—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>16</td>
<td>8%</td>
<td>0%</td>
<td>31%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>23</td>
<td>6%</td>
<td>0%</td>
<td>25%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>25</td>
<td>7%</td>
<td>0%</td>
<td>59%</td>
<td>12%</td>
</tr>
<tr>
<td>843 Automobile Parts Sales—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>13%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>850 Supermarket—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>1%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>1%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>851 Convenience Market—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>15%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>13%</td>
<td>0%</td>
<td>35%</td>
<td>N.A.</td>
</tr>
<tr>
<td>876 Apparel Store—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>44%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>43%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>890 Furniture Store—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>931 Quality Restaurant—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>3</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>932 High-Turnover (Sit-Down) Restaurant—Dense Multi-Use Urban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>932 High-Turnover (Sit-Down) Restaurant—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>7%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, Setting, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>933 Fast-Food Restaurant without Drive-Through Window—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>934 Fast Food Restaurant with Drive Through Window—General Urban/Suburban Setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>13%</td>
<td>0%</td>
<td>31%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>10%</td>
<td>0%</td>
<td>19%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Appendix: Truck Trips as Percent of Total Vehicle Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 General Light Industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>28</td>
<td>8%</td>
<td>0%</td>
<td>29%</td>
<td>8%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>27</td>
<td>3%</td>
<td>0%</td>
<td>50%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>27</td>
<td>2%</td>
<td>0%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>28</td>
<td>4%</td>
<td>0%</td>
<td>100%</td>
<td>21%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>27</td>
<td>7%</td>
<td>0%</td>
<td>29%</td>
<td>9%</td>
</tr>
<tr>
<td>130 Industrial Park</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>3</td>
<td>15%</td>
<td>10%</td>
<td>16%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>12%</td>
<td>10%</td>
<td>13%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>10%</td>
<td>3%</td>
<td>13%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>3</td>
<td>6%</td>
<td>4%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>3</td>
<td>10%</td>
<td>7%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>140 Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>17</td>
<td>10%</td>
<td>0%</td>
<td>35%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>17</td>
<td>8%</td>
<td>0%</td>
<td>50%</td>
<td>17%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>16</td>
<td>7%</td>
<td>0%</td>
<td>80%</td>
<td>24%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>17</td>
<td>2%</td>
<td>0%</td>
<td>37%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>17</td>
<td>6%</td>
<td>0%</td>
<td>42%</td>
<td>14%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>150 Warehousing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>12</td>
<td>27%</td>
<td>0%</td>
<td>65%</td>
<td>21%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>21</td>
<td>13%</td>
<td>0%</td>
<td>71%</td>
<td>22%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>23</td>
<td>15%</td>
<td>0%</td>
<td>87%</td>
<td>20%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>24</td>
<td>22%</td>
<td>0%</td>
<td>100%</td>
<td>26%</td>
</tr>
<tr>
<td>151 Mini-Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>6</td>
<td>6%</td>
<td>0%</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>4%</td>
<td>0%</td>
<td>15%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>5%</td>
<td>0%</td>
<td>50%</td>
<td>20%</td>
</tr>
<tr>
<td>154 High-Cube Transload and Short-Term Storage Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>57</td>
<td>16%</td>
<td>3%</td>
<td>52%</td>
<td>11%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>90</td>
<td>20%</td>
<td>0%</td>
<td>90%</td>
<td>21%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>91</td>
<td>16%</td>
<td>0%</td>
<td>65%</td>
<td>17%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>12</td>
<td>12%</td>
<td>4%</td>
<td>39%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>13</td>
<td>14%</td>
<td>2%</td>
<td>25%</td>
<td>7%</td>
</tr>
<tr>
<td>155 High-Cube Fulfillment Center Warehouse (Non-Sort)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>11</td>
<td>9%</td>
<td>1%</td>
<td>49%</td>
<td>18%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>11</td>
<td>7%</td>
<td>2%</td>
<td>100%</td>
<td>31%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>155 High-Cube Fulfillment Center Warehouse (Sort)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>1</td>
<td>3%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>2%</td>
<td>1%</td>
<td>6%</td>
<td>N.A.</td>
</tr>
<tr>
<td>156 High-Cube Parcel Hub Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>1</td>
<td>9%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>5%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>1%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>157 High-Cube Cold Storage Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>35%</td>
<td>32%</td>
<td>39%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>27%</td>
<td>18%</td>
<td>46%</td>
<td>13%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>23%</td>
<td>0%</td>
<td>45%</td>
<td>16%</td>
</tr>
<tr>
<td>170 Utility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>13</td>
<td>2%</td>
<td>0%</td>
<td>17%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>12</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>12</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>22%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>13</td>
<td>2%</td>
<td>0%</td>
<td>50%</td>
<td>16%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>180 Specialty Trade Contractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>19</td>
<td>6%</td>
<td>0%</td>
<td>38%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>19</td>
<td>1%</td>
<td>0%</td>
<td>25%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>18</td>
<td>1%</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>19</td>
<td>4%</td>
<td>0%</td>
<td>100%</td>
<td>23%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>19</td>
<td>3%</td>
<td>0%</td>
<td>67%</td>
<td>17%</td>
</tr>
<tr>
<td>254 Assisted Living</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>3%</td>
<td>0%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>3%</td>
<td>0%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>7%</td>
<td>0%</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>2%</td>
<td>0%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>312 Business Hotel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>2</td>
<td>4%</td>
<td>3%</td>
<td>6%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>5%</td>
<td>0%</td>
<td>11%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>4%</td>
<td>0%</td>
<td>7%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>4%</td>
<td>0%</td>
<td>11%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>5%</td>
<td>3%</td>
<td>7%</td>
<td>N.A.</td>
</tr>
<tr>
<td>320 Motel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>3%</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>5%</td>
<td>0%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>9%</td>
<td>0%</td>
<td>22%</td>
<td>11%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>4</td>
<td>5%</td>
<td>0%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>9%</td>
<td>0%</td>
<td>33%</td>
<td>17%</td>
</tr>
<tr>
<td>565 Day Care Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>13%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>13</td>
<td>0%</td>
<td>0%</td>
<td>40%</td>
<td>11%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>13%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>13</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>580 Museum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>3%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>10%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>610 Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>3</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>2%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>620 Nursing Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>2%</td>
<td>1%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>4</td>
<td>4%</td>
<td>0%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td>630 Clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>2</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>640 Animal Hospital/Veterinary Clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>6</td>
<td>5%</td>
<td>3%</td>
<td>10%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>6</td>
<td>3%</td>
<td>0%</td>
<td>22%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>10%</td>
<td>0%</td>
<td>22%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>13%</td>
<td>0%</td>
<td>57%</td>
<td>21%</td>
</tr>
<tr>
<td>710 General Office Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>12</td>
<td>1%</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>13</td>
<td>2%</td>
<td>0%</td>
<td>29%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>14</td>
<td>1%</td>
<td>0%</td>
<td>22%</td>
<td>8%</td>
</tr>
<tr>
<td>712 Small Office Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>17</td>
<td>2%</td>
<td>0%</td>
<td>14%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>16</td>
<td>3%</td>
<td>0%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>16</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>17</td>
<td>6%</td>
<td>0%</td>
<td>67%</td>
<td>19%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>17</td>
<td>3%</td>
<td>0%</td>
<td>25%</td>
<td>7%</td>
</tr>
<tr>
<td>720 Medical-Dental Office Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>16</td>
<td>2%</td>
<td>0%</td>
<td>9%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>16</td>
<td>1%</td>
<td>0%</td>
<td>6%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>15</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>16</td>
<td>4%</td>
<td>0%</td>
<td>16%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>16</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>730 Government Office Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>7</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>7</td>
<td>1%</td>
<td>0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>6</td>
<td>1%</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>7</td>
<td>1%</td>
<td>0%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>2%</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>812 Building Materials and Lumber Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>7</td>
<td>3%</td>
<td>1%</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>9</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>7</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>7</td>
<td>3%</td>
<td>0%</td>
<td>29%</td>
<td>11%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>7</td>
<td>3%</td>
<td>0%</td>
<td>19%</td>
<td>8%</td>
</tr>
<tr>
<td>813 Free-Standing Discount Superstore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>814 Variety Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>9</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>9</td>
<td>6%</td>
<td>0%</td>
<td>33%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>9</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>9</td>
<td>2%</td>
<td>0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>9</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>816 Hardware/Paint Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>2%</td>
<td>0%</td>
<td>17%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Truck Trips as Percentage of Total Vehicle Trips

<table>
<thead>
<tr>
<th>Land Use Code, Land Use Name, and Time Period</th>
<th># Sites</th>
<th>Wtd Avg</th>
<th>Lowest</th>
<th>Highest</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>820 Shopping Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>840 Automobile Sales (New)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>2%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>3%</td>
<td>0%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>4%</td>
<td>0%</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>3%</td>
<td>0%</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>841 Automobile Sales (Used)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>14</td>
<td>6%</td>
<td>0%</td>
<td>12%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>8</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>14</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>14</td>
<td>7%</td>
<td>0%</td>
<td>33%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>14</td>
<td>6%</td>
<td>0%</td>
<td>27%</td>
<td>10%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>842 Recreational Vehicle Sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>3%</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>5%</td>
<td>0%</td>
<td>22%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>7%</td>
<td>0%</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>843 Automobile Parts Sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>6</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>6</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>6</td>
<td>1%</td>
<td>0%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>6</td>
<td>2%</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>848 Tire Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>7%</td>
<td>2%</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>7%</td>
<td>0%</td>
<td>21%</td>
<td>9%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>12%</td>
<td>0%</td>
<td>24%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>8%</td>
<td>0%</td>
<td>14%</td>
<td>6%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>850 Supermarket</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>3%</td>
<td>2%</td>
<td>6%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>4%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>853 Convenience Market with Gasoline Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>25</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>25</td>
<td>2%</td>
<td>0%</td>
<td>11%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>25</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>25</td>
<td>2%</td>
<td>0%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>25</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>862 Home Improvement Superstore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>3%</td>
<td>2%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>4</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>4</td>
<td>3%</td>
<td>2%</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>881 Pharmacy/Drugstore with Drive-Through Window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>2%</td>
<td>0%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>890 Furniture Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>7</td>
<td>4%</td>
<td>0%</td>
<td>14%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>5</td>
<td>6%</td>
<td>0%</td>
<td>17%</td>
<td>7%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>13</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>7</td>
<td>8%</td>
<td>0%</td>
<td>33%</td>
<td>13%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>7</td>
<td>6%</td>
<td>0%</td>
<td>67%</td>
<td>26%</td>
</tr>
<tr>
<td>912 Drive-In Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>14</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>20</td>
<td>1%</td>
<td>0%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>15</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>14</td>
<td>0%</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>13</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>931 Quality Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>932 High-Turnover (Sit-Down) Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>31</td>
<td>1%</td>
<td>0%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>11</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>31</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>30</td>
<td>1%</td>
<td>0%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>32</td>
<td>1%</td>
<td>0%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>933 Fast-Food Restaurant without Drive-Through Window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>4</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>4%</td>
<td>0%</td>
<td>11%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>934 Fast Food Restaurant with Drive Through Window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>26</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>13</td>
<td>1%</td>
<td>0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>26</td>
<td>0%</td>
<td>0%</td>
<td>11%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>26</td>
<td>0%</td>
<td>0%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>26</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>935 Fast-Food Restaurant with Drive-Through Window and No Indoor Seating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>941 Quick Lubrication Vehicle Shop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>1</td>
<td>2%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>1</td>
<td>7%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>1</td>
<td>0%</td>
<td>—</td>
<td>—</td>
<td>N.A.</td>
</tr>
<tr>
<td>943 Automobile Parts and Service Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>29</td>
<td>5%</td>
<td>0%</td>
<td>18%</td>
<td>5%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>28</td>
<td>3%</td>
<td>0%</td>
<td>14%</td>
<td>4%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>29</td>
<td>3%</td>
<td>0%</td>
<td>29%</td>
<td>6%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>29</td>
<td>5%</td>
<td>0%</td>
<td>33%</td>
<td>8%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>29</td>
<td>3%</td>
<td>0%</td>
<td>50%</td>
<td>11%</td>
</tr>
<tr>
<td>Land Use Code, Land Use Name, and Time Period</td>
<td># Sites</td>
<td>Wtd Avg</td>
<td>Lowest</td>
<td>Highest</td>
<td>Std Dev</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>945 Gasoline/Service Station With Convenience Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>2</td>
<td>1%</td>
<td>0%</td>
<td>1%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>950 Truck Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>3</td>
<td>34%</td>
<td>27%</td>
<td>47%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>3</td>
<td>33%</td>
<td>21%</td>
<td>48%</td>
<td>13%</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>3</td>
<td>31%</td>
<td>22%</td>
<td>41%</td>
<td>10%</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>3</td>
<td>32%</td>
<td>22%</td>
<td>46%</td>
<td>12%</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>3</td>
<td>32%</td>
<td>24%</td>
<td>41%</td>
<td>9%</td>
</tr>
<tr>
<td>960 Super Convenience Market/Gas Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekday</td>
<td>2</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.</td>
<td>2</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, AM Peak Hour of Generator</td>
<td>2</td>
<td>2%</td>
<td>1%</td>
<td>2%</td>
<td>N.A.</td>
</tr>
<tr>
<td>Weekday, PM Peak Hour of Generator</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Time Period</th>
<th># Data Sites</th>
<th>% of 24-Hour Truck Trips</th>
<th>% of 24-Hour Truck Trips</th>
<th>% of 24-Hour Truck Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Land Use</td>
<td>110</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>General Light Industrial</td>
<td>30</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>

Time Periods

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
<td>0.7</td>
<td>0.5</td>
<td>1.0</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>1.0</td>
<td>1.7</td>
<td>1.3</td>
<td>1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.6</td>
<td>1.2</td>
<td>0.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>2.4</td>
<td>1.9</td>
<td>2.8</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.5</td>
<td>3.8</td>
<td>3.1</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>1.5</td>
<td>1.8</td>
<td>1.2</td>
<td>3.8</td>
<td>4.5</td>
<td>3.2</td>
<td>4.4</td>
<td>5.7</td>
<td>3.1</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>8.2</td>
<td>9.9</td>
<td>6.5</td>
<td>4.2</td>
<td>5.0</td>
<td>3.5</td>
<td>5.3</td>
<td>3.5</td>
<td>7.2</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>8.5</td>
<td>8.8</td>
<td>8.5</td>
<td>7.8</td>
<td>7.7</td>
<td>7.9</td>
<td>5.5</td>
<td>4.8</td>
<td>6.2</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>18.2</td>
<td>16.4</td>
<td>20.1</td>
<td>9.9</td>
<td>10.4</td>
<td>9.4</td>
<td>9.9</td>
<td>13.3</td>
<td>6.5</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>13.2</td>
<td>11.1</td>
<td>15.4</td>
<td>11.0</td>
<td>12.4</td>
<td>9.7</td>
<td>9.7</td>
<td>8.9</td>
<td>10.6</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>8.5</td>
<td>9.4</td>
<td>7.7</td>
<td>9.2</td>
<td>9.4</td>
<td>8.9</td>
<td>11.2</td>
<td>11.7</td>
<td>10.6</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>7.1</td>
<td>7.6</td>
<td>6.5</td>
<td>8.2</td>
<td>7.2</td>
<td>9.2</td>
<td>6.8</td>
<td>8.9</td>
<td>4.7</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>11.5</td>
<td>12.3</td>
<td>10.7</td>
<td>7.7</td>
<td>8.9</td>
<td>6.5</td>
<td>8.0</td>
<td>9.2</td>
<td>6.9</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>9.1</td>
<td>9.4</td>
<td>8.9</td>
<td>6.9</td>
<td>5.9</td>
<td>7.9</td>
<td>6.1</td>
<td>7.0</td>
<td>5.3</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>9.4</td>
<td>9.4</td>
<td>9.5</td>
<td>9.4</td>
<td>8.4</td>
<td>10.4</td>
<td>9.3</td>
<td>11.7</td>
<td>6.9</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>2.6</td>
<td>2.3</td>
<td>3.0</td>
<td>5.2</td>
<td>4.5</td>
<td>6.0</td>
<td>6.9</td>
<td>8.3</td>
<td>5.6</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>1.2</td>
<td>0.6</td>
<td>1.8</td>
<td>3.8</td>
<td>3.7</td>
<td>4.0</td>
<td>3.9</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>2.0</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>1.5</td>
<td>1.7</td>
<td>1.6</td>
<td>1.9</td>
<td>1.2</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>1.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.5</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>1.0</td>
<td>1.5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: All data sites are located in a general urban/suburban setting.
Note: All time-of-day distributions are for a weekday.
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Mini-Warehouse</th>
<th>High-Cube Transload and Short-Term Storage Warehouse</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data Sites</td>
<td>6</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>8.3</td>
<td>16.7</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>8.3</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>33.3</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Specialty Trade Contractor</th>
<th>Assisted Living</th>
<th>Business Hotel</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data Sites</td>
<td>19</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Total Enter Exit</th>
<th>Total Enter Exit</th>
<th>Total Enter Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0 0.0 0.0</td>
<td>9.1 9.1 9.1</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>1.6 3.1 0.0</td>
<td>9.1 9.1 9.1</td>
<td>8.0 7.1 9.1</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>4.7 6.3 3.1</td>
<td>9.1 18.2 0.0</td>
<td>8.0 14.3 0.0</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>14.1 12.5 15.6</td>
<td>4.5 0.0 9.1</td>
<td>8.0 7.1 9.1</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>18.8 18.8 18.8</td>
<td>13.6 9.1 18.2</td>
<td>20.0 21.4 18.2</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>10.9 9.4 12.5</td>
<td>9.1 9.1 9.1</td>
<td>8.0 0.0 18.2</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>15.6 15.6 15.6</td>
<td>9.1 9.1 9.1</td>
<td>24.0 21.4 27.3</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>20.3 21.9 18.8</td>
<td>4.5 9.1 0.0</td>
<td>8.0 7.1 9.1</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>4.7 3.1 6.3</td>
<td>4.5 0.0 9.1</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>6.3 6.3 6.3</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>3.1 3.1 3.1</td>
<td>13.6 18.2 9.1</td>
<td>8.0 7.1 9.1</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0 0.0 0.0</td>
<td>13.6 9.1 18.2</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>4.0 7.1 0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>4.0 7.1 0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Motel</th>
<th>Day Care Center</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data Sites</td>
<td>4</td>
<td>17</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.1</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.5</td>
<td>0.0</td>
<td>7.4</td>
<td>4.3</td>
<td>9.7</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>11.1</td>
<td>22.2</td>
<td>0.0</td>
<td>20.2</td>
<td>23.1</td>
<td>17.2</td>
<td>1.9</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>11.1</td>
<td>22.2</td>
<td>0.0</td>
<td>5.4</td>
<td>4.6</td>
<td>6.3</td>
<td>7.4</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>16.7</td>
<td>11.1</td>
<td>22.2</td>
<td>5.4</td>
<td>6.2</td>
<td>4.7</td>
<td>3.7</td>
<td>8.7</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>22.2</td>
<td>11.1</td>
<td>33.3</td>
<td>10.1</td>
<td>9.2</td>
<td>10.9</td>
<td>7.4</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.3</td>
<td>7.7</td>
<td>10.9</td>
<td>11.1</td>
<td>8.7</td>
<td>12.9</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>4.6</td>
<td>4.7</td>
<td>5.6</td>
<td>0.0</td>
<td>9.7</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>16.7</td>
<td>11.1</td>
<td>22.2</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>18.5</td>
<td>17.4</td>
<td>19.4</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.9</td>
<td>20.0</td>
<td>21.9</td>
<td>5.6</td>
<td>4.3</td>
<td>6.5</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.6</td>
<td>12.3</td>
<td>10.9</td>
<td>7.4</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>3.1</td>
<td>10.9</td>
<td>9.3</td>
<td>13.0</td>
<td>6.5</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>22.2</td>
<td>22.2</td>
<td>22.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.1</td>
<td>8.7</td>
<td>12.9</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.7</td>
<td>4.3</td>
<td>3.2</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time Period</td>
<td># Data Sites</td>
<td>620 Nursing Home</td>
<td>630 Clinic</td>
<td>640 Animal Hospital/Veterinary Clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12–1 AM</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–5 AM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–6 AM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–9 AM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9–10 AM</td>
<td>4.5</td>
<td>9.1</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–11 AM</td>
<td>22.7</td>
<td>18.2</td>
<td>27.3</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–12 AM</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12–1 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 PM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–5 PM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–7 PM</td>
<td>9.1</td>
<td>9.1</td>
<td>9.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>710 General Office Building</td>
<td>712 Small Office Building</td>
<td>720 Medical-Dental Office Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–8 AM</td>
<td>4.4</td>
<td>8.8</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–9 AM</td>
<td>2.9</td>
<td>5.9</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9–10 AM</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–11 AM</td>
<td>13.2</td>
<td>14.7</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–12 PM</td>
<td>20.6</td>
<td>14.7</td>
<td>26.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12–1 PM</td>
<td>19.1</td>
<td>20.6</td>
<td>17.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 PM</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–3 PM</td>
<td>13.2</td>
<td>11.8</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–4 PM</td>
<td>4.4</td>
<td>2.9</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–5 PM</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–6 PM</td>
<td>1.5</td>
<td>0.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>730 Government Office Building</td>
<td>812 Building Materials and Lumber Store</td>
<td>814 Variety Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Data Sites</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
<td>10.6</td>
<td>2.1</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>9.4</td>
<td>12.5</td>
<td>6.3</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>14.0</td>
<td>16.0</td>
<td>12.0</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>28.1</td>
<td>25.0</td>
<td>31.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>22.0</td>
<td>20.0</td>
<td>24.0</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>8.5</td>
<td>10.6</td>
<td>6.4</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>21.9</td>
<td>25.0</td>
<td>18.8</td>
<td>9.6</td>
<td>8.5</td>
<td>10.6</td>
<td>10.0</td>
<td>12.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>11.7</td>
<td>12.8</td>
<td>10.6</td>
<td>2.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>3.1</td>
<td>0.0</td>
<td>6.3</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
<td>10.6</td>
<td>10.6</td>
<td>10.6</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
<td>4.3</td>
<td>17.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Land Use</td>
<td>816 Hardware/Paint Store</td>
<td>820 Shopping Center</td>
<td>840 Automobile Sales (New)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Data Sites</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>3.5</td>
<td>4.5</td>
<td>2.4</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.2</td>
<td>0.0</td>
<td>2.4</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>3.3</td>
<td>2.6</td>
<td>3.5</td>
<td>6.8</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>6.0</td>
<td>6.4</td>
<td>5.5</td>
<td>16.3</td>
<td>15.9</td>
<td>16.7</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>10.7</td>
<td>12.2</td>
<td>9.0</td>
<td>17.4</td>
<td>13.6</td>
<td>21.4</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.8</td>
<td>12.0</td>
<td>9.4</td>
<td>10.5</td>
<td>6.8</td>
<td>14.3</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>41.7</td>
<td>50.0</td>
<td>33.3</td>
<td>11.5</td>
<td>11.7</td>
<td>11.4</td>
<td>10.5</td>
<td>13.6</td>
<td>7.1</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>25.0</td>
<td>16.7</td>
<td>33.3</td>
<td>10.9</td>
<td>11.1</td>
<td>10.7</td>
<td>10.5</td>
<td>11.4</td>
<td>9.5</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.7</td>
<td>11.3</td>
<td>10.0</td>
<td>5.8</td>
<td>4.5</td>
<td>7.1</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.3</td>
<td>5.8</td>
<td>9.0</td>
<td>4.7</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.9</td>
<td>6.2</td>
<td>5.5</td>
<td>15.1</td>
<td>15.9</td>
<td>14.3</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.8</td>
<td>5.6</td>
<td>5.9</td>
<td>1.2</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.0</td>
<td>5.2</td>
<td>6.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.8</td>
<td>4.7</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.8</td>
<td>1.9</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>0.6</td>
<td>3.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>5.0</td>
<td>2.5</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>33.3</td>
<td>33.3</td>
<td>33.3</td>
<td>21.3</td>
<td>22.5</td>
<td>20.0</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>14.6</td>
<td>16.7</td>
<td>12.5</td>
<td>5.6</td>
<td>11.1</td>
<td>0.0</td>
<td>7.5</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>33.3</td>
<td>33.3</td>
<td>33.3</td>
<td>27.8</td>
<td>22.2</td>
<td>33.3</td>
<td>15.0</td>
<td>12.5</td>
<td>17.5</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>6.3</td>
<td>4.2</td>
<td>8.3</td>
<td>33.3</td>
<td>33.3</td>
<td>33.3</td>
<td>8.8</td>
<td>7.5</td>
<td>10.0</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>10.4</td>
<td>12.5</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>6.3</td>
<td>4.2</td>
<td>8.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.0</td>
<td>12.5</td>
<td>17.5</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>7.5</td>
<td>5.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>850</th>
<th>853</th>
<th>881</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supermarket</td>
<td>Convenience Market with Gasoline Pumps</td>
<td>Pharmacy/Drugstore with Drive-Through Window</td>
</tr>
<tr>
<td># Data Sites</td>
<td>1</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>3.1</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>15.6</td>
<td>18.8</td>
<td>12.5</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>15.6</td>
<td>18.8</td>
<td>12.5</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>9.4</td>
<td>6.3</td>
<td>12.5</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>15.6</td>
<td>12.5</td>
<td>18.8</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>12.5</td>
<td>6.3</td>
<td>18.8</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>6.3</td>
<td>12.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>9.4</td>
<td>6.3</td>
<td>12.5</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Land Use</td>
<td>890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
</tr>
<tr>
<td># Data Sites</td>
<td>7</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>12.5</td>
<td>16.7</td>
<td>8.3</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>4.2</td>
<td>0.0</td>
<td>8.3</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>20.8</td>
<td>16.7</td>
<td>25.0</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>29.2</td>
<td>33.3</td>
<td>25.0</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>933</th>
<th>934</th>
<th>935</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fast-Food Restaurant without Drive-Through Window</td>
<td>Fast-Food Restaurant with Drive-Through Window</td>
<td>Fast-Food Restaurant with Drive-Through Window and No Indoor Seating</td>
</tr>
<tr>
<td># Data Sites</td>
<td>4</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>8.3</td>
<td>16.7</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>25.0</td>
<td>16.7</td>
<td>33.3</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>16.7</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Quick Lubrication Vehicle Shop</th>
<th>Automobile Parts and Service Center</th>
<th>Gasoline/Service Station with Convenience Market</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data Sites</td>
<td>1</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td>% of 24-Hour Truck Trips</td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Total</td>
<td>Enter</td>
<td>Exit</td>
</tr>
<tr>
<td>12–1 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>50.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>50.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Hourly Distribution of Truck Trips by Land Use

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
<th>Total</th>
<th>Enter</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1 AM</td>
<td>3.6</td>
<td>3.8</td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 AM</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3 AM</td>
<td>2.2</td>
<td>2.4</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3–4 AM</td>
<td>2.4</td>
<td>2.2</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4–5 AM</td>
<td>2.3</td>
<td>2.0</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5–6 AM</td>
<td>2.4</td>
<td>1.8</td>
<td>3.0</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>6–7 AM</td>
<td>4.4</td>
<td>3.7</td>
<td>5.1</td>
<td>7.1</td>
<td>14.3</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 AM</td>
<td>4.1</td>
<td>3.3</td>
<td>4.9</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>8–9 AM</td>
<td>5.6</td>
<td>5.5</td>
<td>5.7</td>
<td>10.7</td>
<td>7.1</td>
<td>14.3</td>
</tr>
<tr>
<td>9–10 AM</td>
<td>5.1</td>
<td>4.7</td>
<td>5.4</td>
<td>10.7</td>
<td>7.1</td>
<td>14.3</td>
</tr>
<tr>
<td>10–11 AM</td>
<td>5.3</td>
<td>4.5</td>
<td>6.0</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>11–12 PM</td>
<td>5.4</td>
<td>5.8</td>
<td>5.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12–1 PM</td>
<td>6.2</td>
<td>6.3</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1–2 PM</td>
<td>5.6</td>
<td>5.8</td>
<td>5.4</td>
<td>10.7</td>
<td>14.3</td>
<td>7.1</td>
</tr>
<tr>
<td>2–3 PM</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>10.7</td>
<td>7.1</td>
<td>14.3</td>
</tr>
<tr>
<td>3–4 PM</td>
<td>5.1</td>
<td>5.6</td>
<td>4.6</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>4–5 PM</td>
<td>5.2</td>
<td>5.8</td>
<td>4.6</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>5–6 PM</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6–7 PM</td>
<td>5.2</td>
<td>5.7</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7–8 PM</td>
<td>4.5</td>
<td>4.6</td>
<td>4.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8–9 PM</td>
<td>3.5</td>
<td>3.8</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9–10 PM</td>
<td>3.0</td>
<td>3.5</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10–11 PM</td>
<td>3.3</td>
<td>3.7</td>
<td>2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–12 AM</td>
<td>3.5</td>
<td>3.8</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>